Class: Google::Cloud::Notebooks::V1::ExecutionTemplate
- Inherits:
-
Object
- Object
- Google::Cloud::Notebooks::V1::ExecutionTemplate
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/notebooks/v1/execution.rb
Overview
The description a notebook execution workload.
Defined Under Namespace
Modules: JobType, ScaleTier, SchedulerAcceleratorType Classes: DataprocParameters, LabelsEntry, SchedulerAcceleratorConfig, VertexAIParameters
Instance Attribute Summary collapse
-
#accelerator_config ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorConfig
Configuration (count and accelerator type) for hardware running notebook execution.
-
#container_image_uri ⇒ ::String
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container.
-
#dataproc_parameters ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::DataprocParameters
Parameters used in Dataproc JobType executions.
-
#input_notebook_file ⇒ ::String
Path to the notebook file to execute.
-
#job_type ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::JobType
The type of Job to be used on this execution.
-
#kernel_spec ⇒ ::String
Name of the kernel spec to use.
-
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
Labels for execution.
-
#master_type ⇒ ::String
Specifies the type of virtual machine to use for your training job's master worker.
-
#output_notebook_folder ⇒ ::String
Path to the notebook folder to write to.
-
#parameters ⇒ ::String
Parameters used within the 'input_notebook_file' notebook.
-
#params_yaml_file ⇒ ::String
Parameters to be overridden in the notebook during execution.
-
#scale_tier ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::ScaleTier
deprecated
Deprecated.
This field is deprecated and may be removed in the next major version update.
-
#service_account ⇒ ::String
The email address of a service account to use when running the execution.
-
#tensorboard ⇒ ::String
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.
-
#vertex_ai_parameters ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::VertexAIParameters
Parameters used in Vertex AI JobType executions.
Instance Attribute Details
#accelerator_config ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorConfig
Returns Configuration (count and accelerator type) for hardware running notebook execution.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#container_image_uri ⇒ ::String
Returns Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#dataproc_parameters ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::DataprocParameters
Returns Parameters used in Dataproc JobType executions.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#input_notebook_file ⇒ ::String
Returns Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#job_type ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::JobType
Returns The type of Job to be used on this execution.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#kernel_spec ⇒ ::String
Returns Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
Returns Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#master_type ⇒ ::String
Returns Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field. The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:
standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specify cloud_tpu
in this
field. Learn more about the special configuration options for training
with
TPU.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#output_notebook_folder ⇒ ::String
Returns Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#parameters ⇒ ::String
Returns Parameters used within the 'input_notebook_file' notebook.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#params_yaml_file ⇒ ::String
Returns Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#scale_tier ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::ScaleTier
This field is deprecated and may be removed in the next major version update.
Returns Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#service_account ⇒ ::String
Returns The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#tensorboard ⇒ ::String
Returns The name of a Vertex AI [Tensorboard] resource to which this execution
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |
#vertex_ai_parameters ⇒ ::Google::Cloud::Notebooks::V1::ExecutionTemplate::VertexAIParameters
Returns Parameters used in Vertex AI JobType executions.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'proto_docs/google/cloud/notebooks/v1/execution.rb', line 144 class ExecutionTemplate include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a hardware accelerator. Note that not all combinations # of `type` and `core_count` are valid. Check [GPUs on # Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid # combination. TPUs are not supported. # @!attribute [rw] type # @return [::Google::Cloud::Notebooks::V1::ExecutionTemplate::SchedulerAcceleratorType] # Type of this accelerator. # @!attribute [rw] core_count # @return [::Integer] # Count of cores of this accelerator. class SchedulerAcceleratorConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Dataproc JobType executions. # @!attribute [rw] cluster # @return [::String] # URI for cluster used to run Dataproc execution. # Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` class DataprocParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Parameters used in Vertex AI JobType executions. # @!attribute [rw] network # @return [::String] # The full name of the Compute Engine # [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) # to which the Job should be peered. For example, # `projects/12345/global/networks/myVPC`. # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) # is of the form `projects/{project}/global/networks/{network}`. # Where `{project}` is a project number, as in `12345`, and `{network}` is # a network name. # # Private services access must already be configured for the network. If # left unspecified, the job is not peered with any network. # @!attribute [rw] env # @return [::Google::Protobuf::Map{::String => ::String}] # Environment variables. # At most 100 environment variables can be specified and unique. # Example: `GCP_BUCKET=gs://my-bucket/samples/` class VertexAIParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class EnvEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Required. Specifies the machine types, the number of replicas for workers # and parameter servers. module ScaleTier # Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0 # A single worker instance. This tier is suitable for learning how to use # Cloud ML, and for experimenting with new models using small datasets. BASIC = 1 # Many workers and a few parameter servers. STANDARD_1 = 2 # A large number of workers with many parameter servers. PREMIUM_1 = 3 # A single worker instance with a K80 GPU. BASIC_GPU = 4 # A single worker instance with a Cloud TPU. BASIC_TPU = 5 # The CUSTOM tier is not a set tier, but rather enables you to use your # own cluster specification. When you use this tier, set values to # configure your processing cluster according to these guidelines: # # * You _must_ set `ExecutionTemplate.masterType` to specify the type # of machine to use for your master node. This is the only required # setting. CUSTOM = 6 end # Hardware accelerator types for AI Platform Training jobs. module SchedulerAcceleratorType # Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0 # Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1 # Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2 # Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3 # Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4 # Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5 # Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10 # TPU v2. TPU_V2 = 6 # TPU v3. TPU_V3 = 7 end # The backend used for this execution. module JobType # No type specified. JOB_TYPE_UNSPECIFIED = 0 # Custom Job in `aiplatform.googleapis.com`. # Default value for an execution. VERTEX_AI = 1 # Run execution on a cluster with Dataproc as a job. # https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2 end end |