Class GoogleCloudAiplatformV1beta1FeatureStatsAnomaly
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Implements
Inherited Members
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1FeatureStatsAnomaly : IDirectResponseSchema
Properties
AnomalyDetectionThreshold
This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
Declaration
[JsonProperty("anomalyDetectionThreshold")]
public virtual double? AnomalyDetectionThreshold { get; set; }
Property Value
Type | Description |
---|---|
double? |
AnomalyUri
Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs:////anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message [tensorflow.metadata.v0.AnomalyInfo] (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
Declaration
[JsonProperty("anomalyUri")]
public virtual string AnomalyUri { get; set; }
Property Value
Type | Description |
---|---|
string |
DistributionDeviation
Deviation from the current stats to baseline stats. 1. For categorical feature, the distribution distance is calculated by L-inifinity norm. 2. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
Declaration
[JsonProperty("distributionDeviation")]
public virtual double? DistributionDeviation { get; set; }
Property Value
Type | Description |
---|---|
double? |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
EndTime
object representation of EndTimeRaw.
Declaration
[JsonIgnore]
[Obsolete("This property is obsolete and may behave unexpectedly; please use EndTimeDateTimeOffset instead.")]
public virtual object EndTime { get; set; }
Property Value
Type | Description |
---|---|
object |
EndTimeDateTimeOffset
DateTimeOffset representation of EndTimeRaw.
Declaration
[JsonIgnore]
public virtual DateTimeOffset? EndTimeDateTimeOffset { get; set; }
Property Value
Type | Description |
---|---|
DateTimeOffset? |
EndTimeRaw
The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
Declaration
[JsonProperty("endTime")]
public virtual string EndTimeRaw { get; set; }
Property Value
Type | Description |
---|---|
string |
Score
Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
Declaration
[JsonProperty("score")]
public virtual double? Score { get; set; }
Property Value
Type | Description |
---|---|
double? |
StartTime
object representation of StartTimeRaw.
Declaration
[JsonIgnore]
[Obsolete("This property is obsolete and may behave unexpectedly; please use StartTimeDateTimeOffset instead.")]
public virtual object StartTime { get; set; }
Property Value
Type | Description |
---|---|
object |
StartTimeDateTimeOffset
DateTimeOffset representation of StartTimeRaw.
Declaration
[JsonIgnore]
public virtual DateTimeOffset? StartTimeDateTimeOffset { get; set; }
Property Value
Type | Description |
---|---|
DateTimeOffset? |
StartTimeRaw
The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
Declaration
[JsonProperty("startTime")]
public virtual string StartTimeRaw { get; set; }
Property Value
Type | Description |
---|---|
string |
StatsUri
Path of the stats file for current feature values in Cloud Storage bucket. Format: gs:////stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message tensorflow.metadata.v0.FeatureNameStatistics.
Declaration
[JsonProperty("statsUri")]
public virtual string StatsUri { get; set; }
Property Value
Type | Description |
---|---|
string |