Class GoogleCloudMlV1TrainingInput
Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command-line arguments and/or in a YAML configuration file referenced from the --config command-line argument. For details, see the guide to submitting a training job.
Implements
Inherited Members
Namespace: Google.Apis.CloudMachineLearningEngine.v1.Data
Assembly: Google.Apis.CloudMachineLearningEngine.v1.dll
Syntax
public class GoogleCloudMlV1TrainingInput : IDirectResponseSchema
Properties
Args
Optional. Command-line arguments passed to the training application when it starts. If your job uses a
custom container, then the arguments are passed to the container's ENTRYPOINT
command.
Declaration
[JsonProperty("args")]
public virtual IList<string> Args { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
EnableWebAccess
Optional. Whether you want AI Platform Training to enable interactive shell
access to training
containers. If set to true
, you can access interactive shells at the URIs given by
TrainingOutput.web_access_uris or HyperparameterOutput.web_access_uris (within TrainingOutput.trials).
Declaration
[JsonProperty("enableWebAccess")]
public virtual bool? EnableWebAccess { get; set; }
Property Value
Type | Description |
---|---|
bool? |
EncryptionConfig
Optional. Options for using customer-managed encryption keys (CMEK) to protect resources created by a training job, instead of using Google's default encryption. If this is set, then all resources created by the training job will be encrypted with the customer-managed encryption key that you specify. Learn how and when to use CMEK with AI Platform Training.
Declaration
[JsonProperty("encryptionConfig")]
public virtual GoogleCloudMlV1EncryptionConfig EncryptionConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1EncryptionConfig |
EvaluatorConfig
Optional. The configuration for evaluators. You should only set evaluatorConfig.acceleratorConfig
if
evaluatorType
is set to a Compute Engine machine type. Learn about restrictions on accelerator
configurations for training.
Set evaluatorConfig.imageUri
only if you build a custom image for your evaluator. If
evaluatorConfig.imageUri
has not been set, AI Platform uses the value of masterConfig.imageUri
. Learn
more about configuring custom containers.
Declaration
[JsonProperty("evaluatorConfig")]
public virtual GoogleCloudMlV1ReplicaConfig EvaluatorConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1ReplicaConfig |
EvaluatorCount
Optional. The number of evaluator replicas to use for the training job. Each replica in the cluster will be
of the type specified in evaluator_type
. This value can only be used when scale_tier
is set to CUSTOM
.
If you set this value, you must also set evaluator_type
. The default value is zero.
Declaration
[JsonProperty("evaluatorCount")]
public virtual long? EvaluatorCount { get; set; }
Property Value
Type | Description |
---|---|
long? |
EvaluatorType
Optional. Specifies the type of virtual machine to use for your training job's evaluator nodes. The
supported values are the same as those described in the entry for masterType
. This value must be
consistent with the category of machine type that masterType
uses. In other words, both must be Compute
Engine machine types or both must be legacy machine types. This value must be present when scaleTier
is
set to CUSTOM
and evaluatorCount
is greater than zero.
Declaration
[JsonProperty("evaluatorType")]
public virtual string EvaluatorType { get; set; }
Property Value
Type | Description |
---|---|
string |
Hyperparameters
Optional. The set of Hyperparameters to tune.
Declaration
[JsonProperty("hyperparameters")]
public virtual GoogleCloudMlV1HyperparameterSpec Hyperparameters { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1HyperparameterSpec |
JobDir
Optional. A Google Cloud Storage path in which to store training outputs and other data needed for training. This path is passed to your TensorFlow program as the '--job-dir' command-line argument. The benefit of specifying this field is that Cloud ML validates the path for use in training.
Declaration
[JsonProperty("jobDir")]
public virtual string JobDir { get; set; }
Property Value
Type | Description |
---|---|
string |
MasterConfig
Optional. The configuration for your master worker. You should only set masterConfig.acceleratorConfig
if
masterType
is set to a Compute Engine machine type. Learn about restrictions on accelerator
configurations for training.
Set masterConfig.imageUri
only if you build a custom image. Only one of masterConfig.imageUri
and
runtimeVersion
should be set. Learn more about configuring custom
containers.
Declaration
[JsonProperty("masterConfig")]
public virtual GoogleCloudMlV1ReplicaConfig MasterConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1ReplicaConfig |
MasterType
Optional. Specifies the type of virtual machine to use for your training job's master worker. You must
specify this field when scaleTier
is set to CUSTOM
. You can use certain Compute Engine machine types
directly in this field. See the list of compatible Compute Engine machine
types. Alternatively, you can use
the certain legacy machine types in this field. See the list of legacy machine
types. Finally, if you want to use a TPU for
training, specify cloud_tpu
in this field. Learn more about the special configuration options for
training with TPUs.
Declaration
[JsonProperty("masterType")]
public virtual string MasterType { get; set; }
Property Value
Type | Description |
---|---|
string |
Network
Optional. The full name of the Compute Engine network to which the Job is peered. For
example, projects/12345/global/networks/myVPC
. The format of this field is
projects/{project}/global/networks/{network}
, where {project} is a project number (like 12345
) and
{network} is network name. Private services access must already be configured for the network. If left
unspecified, the Job is not peered with any network. Learn about using VPC Network
Peering..
Declaration
[JsonProperty("network")]
public virtual string Network { get; set; }
Property Value
Type | Description |
---|---|
string |
PackageUris
Required. The Google Cloud Storage location of the packages with the training program and any additional dependencies. The maximum number of package URIs is 100.
Declaration
[JsonProperty("packageUris")]
public virtual IList<string> PackageUris { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
ParameterServerConfig
Optional. The configuration for parameter servers. You should only set
parameterServerConfig.acceleratorConfig
if parameterServerType
is set to a Compute Engine machine type.
Learn about restrictions on accelerator configurations for
training. Set
parameterServerConfig.imageUri
only if you build a custom image for your parameter server. If
parameterServerConfig.imageUri
has not been set, AI Platform uses the value of masterConfig.imageUri
.
Learn more about configuring custom
containers.
Declaration
[JsonProperty("parameterServerConfig")]
public virtual GoogleCloudMlV1ReplicaConfig ParameterServerConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1ReplicaConfig |
ParameterServerCount
Optional. The number of parameter server replicas to use for the training job. Each replica in the cluster
will be of the type specified in parameter_server_type
. This value can only be used when scale_tier
is
set to CUSTOM
. If you set this value, you must also set parameter_server_type
. The default value is
zero.
Declaration
[JsonProperty("parameterServerCount")]
public virtual long? ParameterServerCount { get; set; }
Property Value
Type | Description |
---|---|
long? |
ParameterServerType
Optional. Specifies the type of virtual machine to use for your training job's parameter server. The
supported values are the same as those described in the entry for master_type
. This value must be
consistent with the category of machine type that masterType
uses. In other words, both must be Compute
Engine machine types or both must be legacy machine types. This value must be present when scaleTier
is
set to CUSTOM
and parameter_server_count
is greater than zero.
Declaration
[JsonProperty("parameterServerType")]
public virtual string ParameterServerType { get; set; }
Property Value
Type | Description |
---|---|
string |
PythonModule
Required. The Python module name to run after installing the packages.
Declaration
[JsonProperty("pythonModule")]
public virtual string PythonModule { get; set; }
Property Value
Type | Description |
---|---|
string |
PythonVersion
Optional. The version of Python used in training. You must either specify this field or specify
masterConfig.imageUri
. The following Python versions are available: * Python '3.7' is available when
runtime_version
is set to '1.15' or later. * Python '3.5' is available when runtime_version
is set to a
version from '1.4' to '1.14'. * Python '2.7' is available when runtime_version
is set to '1.15' or
earlier. Read more about the Python versions available for each runtime
version.
Declaration
[JsonProperty("pythonVersion")]
public virtual string PythonVersion { get; set; }
Property Value
Type | Description |
---|---|
string |
Region
Required. The region to run the training job in. See the available regions for AI Platform Training.
Declaration
[JsonProperty("region")]
public virtual string Region { get; set; }
Property Value
Type | Description |
---|---|
string |
RuntimeVersion
Optional. The AI Platform runtime version to use for training. You must either specify this field or specify
masterConfig.imageUri
. For more information, see the runtime version
list and learn how to manage runtime
versions.
Declaration
[JsonProperty("runtimeVersion")]
public virtual string RuntimeVersion { get; set; }
Property Value
Type | Description |
---|---|
string |
ScaleTier
Required. Specifies the machine types, the number of replicas for workers and parameter servers.
Declaration
[JsonProperty("scaleTier")]
public virtual string ScaleTier { get; set; }
Property Value
Type | Description |
---|---|
string |
Scheduling
Optional. Scheduling options for a training job.
Declaration
[JsonProperty("scheduling")]
public virtual GoogleCloudMlV1Scheduling Scheduling { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1Scheduling |
ServiceAccount
Optional. The email address of a service account to use when running the training appplication. You must
have the iam.serviceAccounts.actAs
permission for the specified service account. In addition, the AI
Platform Training Google-managed service account must have the roles/iam.serviceAccountAdmin
role for the
specified service account. Learn more about configuring a service
account. If not specified, the AI Platform Training
Google-managed service account is used by default.
Declaration
[JsonProperty("serviceAccount")]
public virtual string ServiceAccount { get; set; }
Property Value
Type | Description |
---|---|
string |
UseChiefInTfConfig
Optional. Use chief
instead of master
in the TF_CONFIG
environment variable when training with a
custom container. Defaults to false
. Learn more about this
field. This field has no
effect for training jobs that don't use a custom container.
Declaration
[JsonProperty("useChiefInTfConfig")]
public virtual bool? UseChiefInTfConfig { get; set; }
Property Value
Type | Description |
---|---|
bool? |
WorkerConfig
Optional. The configuration for workers. You should only set workerConfig.acceleratorConfig
if
workerType
is set to a Compute Engine machine type. Learn about restrictions on accelerator
configurations for training.
Set workerConfig.imageUri
only if you build a custom image for your worker. If workerConfig.imageUri
has
not been set, AI Platform uses the value of masterConfig.imageUri
. Learn more about configuring custom
containers.
Declaration
[JsonProperty("workerConfig")]
public virtual GoogleCloudMlV1ReplicaConfig WorkerConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudMlV1ReplicaConfig |
WorkerCount
Optional. The number of worker replicas to use for the training job. Each replica in the cluster will be of
the type specified in worker_type
. This value can only be used when scale_tier
is set to CUSTOM
. If
you set this value, you must also set worker_type
. The default value is zero.
Declaration
[JsonProperty("workerCount")]
public virtual long? WorkerCount { get; set; }
Property Value
Type | Description |
---|---|
long? |
WorkerType
Optional. Specifies the type of virtual machine to use for your training job's worker nodes. The supported
values are the same as those described in the entry for masterType
. This value must be consistent with the
category of machine type that masterType
uses. In other words, both must be Compute Engine machine types
or both must be legacy machine types. If you use cloud_tpu
for this value, see special instructions for
configuring a custom TPU machine.
This value must be present when scaleTier
is set to CUSTOM
and workerCount
is greater than zero.
Declaration
[JsonProperty("workerType")]
public virtual string WorkerType { get; set; }
Property Value
Type | Description |
---|---|
string |