public final class TrainingOptions
extends com.google.api.client.json.GenericJson
This is the Java data model class that specifies how to parse/serialize into the JSON that is transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: https://developers.google.com/api-client-library/java/google-http-java-client/json
com.google.api.client.util.GenericData.FlagsAbstractMap.SimpleEntry<K,V>, AbstractMap.SimpleImmutableEntry<K,V>| Constructor and Description |
|---|
TrainingOptions() |
| Modifier and Type | Method and Description |
|---|---|
TrainingOptions |
clone() |
String |
getActivationFn()
Activation function of the neural nets.
|
Boolean |
getAdjustStepChanges()
If true, detect step changes and make data adjustment in the input time series.
|
Boolean |
getApproxGlobalFeatureContrib()
Whether to use approximate feature contribution method in XGBoost model explanation for global
explain.
|
Boolean |
getAutoArima()
Whether to enable auto ARIMA or not.
|
Long |
getAutoArimaMaxOrder()
The max value of the sum of non-seasonal p and q.
|
Long |
getAutoArimaMinOrder()
The min value of the sum of non-seasonal p and q.
|
Boolean |
getAutoClassWeights()
Whether to calculate class weights automatically based on the popularity of each label.
|
Long |
getBatchSize()
Batch size for dnn models.
|
String |
getBoosterType()
Booster type for boosted tree models.
|
Double |
getBudgetHours()
Budget in hours for AutoML training.
|
Boolean |
getCalculatePValues()
Whether or not p-value test should be computed for this model.
|
String |
getCategoryEncodingMethod()
Categorical feature encoding method.
|
Boolean |
getCleanSpikesAndDips()
If true, clean spikes and dips in the input time series.
|
String |
getColorSpace()
Enums for color space, used for processing images in Object Table.
|
Double |
getColsampleBylevel()
Subsample ratio of columns for each level for boosted tree models.
|
Double |
getColsampleBynode()
Subsample ratio of columns for each node(split) for boosted tree models.
|
Double |
getColsampleBytree()
Subsample ratio of columns when constructing each tree for boosted tree models.
|
String |
getContributionMetric()
The contribution metric.
|
String |
getDartNormalizeType()
Type of normalization algorithm for boosted tree models using dart booster.
|
String |
getDataFrequency()
The data frequency of a time series.
|
String |
getDataSplitColumn()
The column to split data with.
|
Double |
getDataSplitEvalFraction()
The fraction of evaluation data over the whole input data.
|
String |
getDataSplitMethod()
The data split type for training and evaluation, e.g.
|
Boolean |
getDecomposeTimeSeries()
If true, perform decompose time series and save the results.
|
List<String> |
getDimensionIdColumns()
Optional.
|
String |
getDistanceType()
Distance type for clustering models.
|
Double |
getDropout()
Dropout probability for dnn models.
|
Boolean |
getEarlyStop()
Whether to stop early when the loss doesn't improve significantly any more (compared to
min_relative_progress).
|
Boolean |
getEnableGlobalExplain()
If true, enable global explanation during training.
|
String |
getEndpointIdleTtl()
The idle TTL of the endpoint before the resources get destroyed.
|
String |
getFeedbackType()
Feedback type that specifies which algorithm to run for matrix factorization.
|
Boolean |
getFitIntercept()
Whether the model should include intercept during model training.
|
Double |
getForecastLimitLowerBound()
The forecast limit lower bound that was used during ARIMA model training with limits.
|
Double |
getForecastLimitUpperBound()
The forecast limit upper bound that was used during ARIMA model training with limits.
|
List<Long> |
getHiddenUnits()
Hidden units for dnn models.
|
String |
getHolidayRegion()
The geographical region based on which the holidays are considered in time series modeling.
|
List<String> |
getHolidayRegions()
A list of geographical regions that are used for time series modeling.
|
Long |
getHorizon()
The number of periods ahead that need to be forecasted.
|
List<String> |
getHparamTuningObjectives()
The target evaluation metrics to optimize the hyperparameters for.
|
String |
getHuggingFaceModelId()
The id of a Hugging Face model.
|
Boolean |
getIncludeDrift()
Include drift when fitting an ARIMA model.
|
Double |
getInitialLearnRate()
Specifies the initial learning rate for the line search learn rate strategy.
|
List<String> |
getInputLabelColumns()
Name of input label columns in training data.
|
String |
getInstanceWeightColumn()
Name of the instance weight column for training data.
|
Long |
getIntegratedGradientsNumSteps()
Number of integral steps for the integrated gradients explain method.
|
String |
getIsTestColumn()
Name of the column used to determine the rows corresponding to control and test.
|
String |
getItemColumn()
Item column specified for matrix factorization models.
|
String |
getKmeansInitializationColumn()
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
|
String |
getKmeansInitializationMethod()
The method used to initialize the centroids for kmeans algorithm.
|
Double |
getL1RegActivation()
L1 regularization coefficient to activations.
|
Double |
getL1Regularization()
L1 regularization coefficient.
|
Double |
getL2Regularization()
L2 regularization coefficient.
|
Map<String,Double> |
getLabelClassWeights()
Weights associated with each label class, for rebalancing the training data.
|
Double |
getLearnRate()
Learning rate in training.
|
String |
getLearnRateStrategy()
The strategy to determine learn rate for the current iteration.
|
String |
getLossType()
Type of loss function used during training run.
|
String |
getMachineType()
The type of the machine used to deploy and serve the model.
|
Long |
getMaxIterations()
The maximum number of iterations in training.
|
Long |
getMaxParallelTrials()
Maximum number of trials to run in parallel.
|
Long |
getMaxReplicaCount()
The maximum number of machine replicas that will be deployed on an endpoint.
|
Long |
getMaxTimeSeriesLength()
The maximum number of time points in a time series that can be used in modeling the trend
component of the time series.
|
Long |
getMaxTreeDepth()
Maximum depth of a tree for boosted tree models.
|
Double |
getMinAprioriSupport()
The apriori support minimum.
|
Double |
getMinRelativeProgress()
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'.
|
Long |
getMinReplicaCount()
The minimum number of machine replicas that will be always deployed on an endpoint.
|
Double |
getMinSplitLoss()
Minimum split loss for boosted tree models.
|
Long |
getMinTimeSeriesLength()
The minimum number of time points in a time series that are used in modeling the trend
component of the time series.
|
Long |
getMinTreeChildWeight()
Minimum sum of instance weight needed in a child for boosted tree models.
|
String |
getModelGardenModelName()
The name of a Vertex model garden publisher model.
|
String |
getModelRegistry()
The model registry.
|
String |
getModelUri()
Google Cloud Storage URI from which the model was imported.
|
ArimaOrder |
getNonSeasonalOrder()
A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are
the AR order, the degree of differencing, and the MA order.
|
Long |
getNumClusters()
Number of clusters for clustering models.
|
Long |
getNumFactors()
Num factors specified for matrix factorization models.
|
Long |
getNumParallelTree()
Number of parallel trees constructed during each iteration for boosted tree models.
|
Long |
getNumPrincipalComponents()
Number of principal components to keep in the PCA model.
|
Long |
getNumTrials()
Number of trials to run this hyperparameter tuning job.
|
String |
getOptimizationStrategy()
Optimization strategy for training linear regression models.
|
String |
getOptimizer()
Optimizer used for training the neural nets.
|
Double |
getPcaExplainedVarianceRatio()
The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
|
String |
getPcaSolver()
The solver for PCA.
|
String |
getReservationAffinityKey()
Corresponds to the label key of a reservation resource used by Vertex AI.
|
String |
getReservationAffinityType()
Specifies the reservation affinity type used to configure a Vertex AI resource.
|
List<String> |
getReservationAffinityValues()
Corresponds to the label values of a reservation resource used by Vertex AI.
|
Long |
getSampledShapleyNumPaths()
Number of paths for the sampled Shapley explain method.
|
Boolean |
getScaleFeatures()
If true, scale the feature values by dividing the feature standard deviation.
|
Boolean |
getStandardizeFeatures()
Whether to standardize numerical features.
|
Double |
getSubsample()
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree
models.
|
String |
getTfVersion()
Based on the selected TF version, the corresponding docker image is used to train external
models.
|
String |
getTimeSeriesDataColumn()
Column to be designated as time series data for ARIMA model.
|
String |
getTimeSeriesIdColumn()
The time series id column that was used during ARIMA model training.
|
List<String> |
getTimeSeriesIdColumns()
The time series id columns that were used during ARIMA model training.
|
Double |
getTimeSeriesLengthFraction()
The fraction of the interpolated length of the time series that's used to model the time series
trend component.
|
String |
getTimeSeriesTimestampColumn()
Column to be designated as time series timestamp for ARIMA model.
|
String |
getTreeMethod()
Tree construction algorithm for boosted tree models.
|
Long |
getTrendSmoothingWindowSize()
Smoothing window size for the trend component.
|
String |
getUserColumn()
User column specified for matrix factorization models.
|
List<String> |
getVertexAiModelVersionAliases()
The version aliases to apply in Vertex AI model registry.
|
Double |
getWalsAlpha()
Hyperparameter for matrix factoration when implicit feedback type is specified.
|
Boolean |
getWarmStart()
Whether to train a model from the last checkpoint.
|
String |
getXgboostVersion()
User-selected XGBoost versions for training of XGBoost models.
|
TrainingOptions |
set(String fieldName,
Object value) |
TrainingOptions |
setActivationFn(String activationFn)
Activation function of the neural nets.
|
TrainingOptions |
setAdjustStepChanges(Boolean adjustStepChanges)
If true, detect step changes and make data adjustment in the input time series.
|
TrainingOptions |
setApproxGlobalFeatureContrib(Boolean approxGlobalFeatureContrib)
Whether to use approximate feature contribution method in XGBoost model explanation for global
explain.
|
TrainingOptions |
setAutoArima(Boolean autoArima)
Whether to enable auto ARIMA or not.
|
TrainingOptions |
setAutoArimaMaxOrder(Long autoArimaMaxOrder)
The max value of the sum of non-seasonal p and q.
|
TrainingOptions |
setAutoArimaMinOrder(Long autoArimaMinOrder)
The min value of the sum of non-seasonal p and q.
|
TrainingOptions |
setAutoClassWeights(Boolean autoClassWeights)
Whether to calculate class weights automatically based on the popularity of each label.
|
TrainingOptions |
setBatchSize(Long batchSize)
Batch size for dnn models.
|
TrainingOptions |
setBoosterType(String boosterType)
Booster type for boosted tree models.
|
TrainingOptions |
setBudgetHours(Double budgetHours)
Budget in hours for AutoML training.
|
TrainingOptions |
setCalculatePValues(Boolean calculatePValues)
Whether or not p-value test should be computed for this model.
|
TrainingOptions |
setCategoryEncodingMethod(String categoryEncodingMethod)
Categorical feature encoding method.
|
TrainingOptions |
setCleanSpikesAndDips(Boolean cleanSpikesAndDips)
If true, clean spikes and dips in the input time series.
|
TrainingOptions |
setColorSpace(String colorSpace)
Enums for color space, used for processing images in Object Table.
|
TrainingOptions |
setColsampleBylevel(Double colsampleBylevel)
Subsample ratio of columns for each level for boosted tree models.
|
TrainingOptions |
setColsampleBynode(Double colsampleBynode)
Subsample ratio of columns for each node(split) for boosted tree models.
|
TrainingOptions |
setColsampleBytree(Double colsampleBytree)
Subsample ratio of columns when constructing each tree for boosted tree models.
|
TrainingOptions |
setContributionMetric(String contributionMetric)
The contribution metric.
|
TrainingOptions |
setDartNormalizeType(String dartNormalizeType)
Type of normalization algorithm for boosted tree models using dart booster.
|
TrainingOptions |
setDataFrequency(String dataFrequency)
The data frequency of a time series.
|
TrainingOptions |
setDataSplitColumn(String dataSplitColumn)
The column to split data with.
|
TrainingOptions |
setDataSplitEvalFraction(Double dataSplitEvalFraction)
The fraction of evaluation data over the whole input data.
|
TrainingOptions |
setDataSplitMethod(String dataSplitMethod)
The data split type for training and evaluation, e.g.
|
TrainingOptions |
setDecomposeTimeSeries(Boolean decomposeTimeSeries)
If true, perform decompose time series and save the results.
|
TrainingOptions |
setDimensionIdColumns(List<String> dimensionIdColumns)
Optional.
|
TrainingOptions |
setDistanceType(String distanceType)
Distance type for clustering models.
|
TrainingOptions |
setDropout(Double dropout)
Dropout probability for dnn models.
|
TrainingOptions |
setEarlyStop(Boolean earlyStop)
Whether to stop early when the loss doesn't improve significantly any more (compared to
min_relative_progress).
|
TrainingOptions |
setEnableGlobalExplain(Boolean enableGlobalExplain)
If true, enable global explanation during training.
|
TrainingOptions |
setEndpointIdleTtl(String endpointIdleTtl)
The idle TTL of the endpoint before the resources get destroyed.
|
TrainingOptions |
setFeedbackType(String feedbackType)
Feedback type that specifies which algorithm to run for matrix factorization.
|
TrainingOptions |
setFitIntercept(Boolean fitIntercept)
Whether the model should include intercept during model training.
|
TrainingOptions |
setForecastLimitLowerBound(Double forecastLimitLowerBound)
The forecast limit lower bound that was used during ARIMA model training with limits.
|
TrainingOptions |
setForecastLimitUpperBound(Double forecastLimitUpperBound)
The forecast limit upper bound that was used during ARIMA model training with limits.
|
TrainingOptions |
setHiddenUnits(List<Long> hiddenUnits)
Hidden units for dnn models.
|
TrainingOptions |
setHolidayRegion(String holidayRegion)
The geographical region based on which the holidays are considered in time series modeling.
|
TrainingOptions |
setHolidayRegions(List<String> holidayRegions)
A list of geographical regions that are used for time series modeling.
|
TrainingOptions |
setHorizon(Long horizon)
The number of periods ahead that need to be forecasted.
|
TrainingOptions |
setHparamTuningObjectives(List<String> hparamTuningObjectives)
The target evaluation metrics to optimize the hyperparameters for.
|
TrainingOptions |
setHuggingFaceModelId(String huggingFaceModelId)
The id of a Hugging Face model.
|
TrainingOptions |
setIncludeDrift(Boolean includeDrift)
Include drift when fitting an ARIMA model.
|
TrainingOptions |
setInitialLearnRate(Double initialLearnRate)
Specifies the initial learning rate for the line search learn rate strategy.
|
TrainingOptions |
setInputLabelColumns(List<String> inputLabelColumns)
Name of input label columns in training data.
|
TrainingOptions |
setInstanceWeightColumn(String instanceWeightColumn)
Name of the instance weight column for training data.
|
TrainingOptions |
setIntegratedGradientsNumSteps(Long integratedGradientsNumSteps)
Number of integral steps for the integrated gradients explain method.
|
TrainingOptions |
setIsTestColumn(String isTestColumn)
Name of the column used to determine the rows corresponding to control and test.
|
TrainingOptions |
setItemColumn(String itemColumn)
Item column specified for matrix factorization models.
|
TrainingOptions |
setKmeansInitializationColumn(String kmeansInitializationColumn)
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
|
TrainingOptions |
setKmeansInitializationMethod(String kmeansInitializationMethod)
The method used to initialize the centroids for kmeans algorithm.
|
TrainingOptions |
setL1RegActivation(Double l1RegActivation)
L1 regularization coefficient to activations.
|
TrainingOptions |
setL1Regularization(Double l1Regularization)
L1 regularization coefficient.
|
TrainingOptions |
setL2Regularization(Double l2Regularization)
L2 regularization coefficient.
|
TrainingOptions |
setLabelClassWeights(Map<String,Double> labelClassWeights)
Weights associated with each label class, for rebalancing the training data.
|
TrainingOptions |
setLearnRate(Double learnRate)
Learning rate in training.
|
TrainingOptions |
setLearnRateStrategy(String learnRateStrategy)
The strategy to determine learn rate for the current iteration.
|
TrainingOptions |
setLossType(String lossType)
Type of loss function used during training run.
|
TrainingOptions |
setMachineType(String machineType)
The type of the machine used to deploy and serve the model.
|
TrainingOptions |
setMaxIterations(Long maxIterations)
The maximum number of iterations in training.
|
TrainingOptions |
setMaxParallelTrials(Long maxParallelTrials)
Maximum number of trials to run in parallel.
|
TrainingOptions |
setMaxReplicaCount(Long maxReplicaCount)
The maximum number of machine replicas that will be deployed on an endpoint.
|
TrainingOptions |
setMaxTimeSeriesLength(Long maxTimeSeriesLength)
The maximum number of time points in a time series that can be used in modeling the trend
component of the time series.
|
TrainingOptions |
setMaxTreeDepth(Long maxTreeDepth)
Maximum depth of a tree for boosted tree models.
|
TrainingOptions |
setMinAprioriSupport(Double minAprioriSupport)
The apriori support minimum.
|
TrainingOptions |
setMinRelativeProgress(Double minRelativeProgress)
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'.
|
TrainingOptions |
setMinReplicaCount(Long minReplicaCount)
The minimum number of machine replicas that will be always deployed on an endpoint.
|
TrainingOptions |
setMinSplitLoss(Double minSplitLoss)
Minimum split loss for boosted tree models.
|
TrainingOptions |
setMinTimeSeriesLength(Long minTimeSeriesLength)
The minimum number of time points in a time series that are used in modeling the trend
component of the time series.
|
TrainingOptions |
setMinTreeChildWeight(Long minTreeChildWeight)
Minimum sum of instance weight needed in a child for boosted tree models.
|
TrainingOptions |
setModelGardenModelName(String modelGardenModelName)
The name of a Vertex model garden publisher model.
|
TrainingOptions |
setModelRegistry(String modelRegistry)
The model registry.
|
TrainingOptions |
setModelUri(String modelUri)
Google Cloud Storage URI from which the model was imported.
|
TrainingOptions |
setNonSeasonalOrder(ArimaOrder nonSeasonalOrder)
A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are
the AR order, the degree of differencing, and the MA order.
|
TrainingOptions |
setNumClusters(Long numClusters)
Number of clusters for clustering models.
|
TrainingOptions |
setNumFactors(Long numFactors)
Num factors specified for matrix factorization models.
|
TrainingOptions |
setNumParallelTree(Long numParallelTree)
Number of parallel trees constructed during each iteration for boosted tree models.
|
TrainingOptions |
setNumPrincipalComponents(Long numPrincipalComponents)
Number of principal components to keep in the PCA model.
|
TrainingOptions |
setNumTrials(Long numTrials)
Number of trials to run this hyperparameter tuning job.
|
TrainingOptions |
setOptimizationStrategy(String optimizationStrategy)
Optimization strategy for training linear regression models.
|
TrainingOptions |
setOptimizer(String optimizer)
Optimizer used for training the neural nets.
|
TrainingOptions |
setPcaExplainedVarianceRatio(Double pcaExplainedVarianceRatio)
The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
|
TrainingOptions |
setPcaSolver(String pcaSolver)
The solver for PCA.
|
TrainingOptions |
setReservationAffinityKey(String reservationAffinityKey)
Corresponds to the label key of a reservation resource used by Vertex AI.
|
TrainingOptions |
setReservationAffinityType(String reservationAffinityType)
Specifies the reservation affinity type used to configure a Vertex AI resource.
|
TrainingOptions |
setReservationAffinityValues(List<String> reservationAffinityValues)
Corresponds to the label values of a reservation resource used by Vertex AI.
|
TrainingOptions |
setSampledShapleyNumPaths(Long sampledShapleyNumPaths)
Number of paths for the sampled Shapley explain method.
|
TrainingOptions |
setScaleFeatures(Boolean scaleFeatures)
If true, scale the feature values by dividing the feature standard deviation.
|
TrainingOptions |
setStandardizeFeatures(Boolean standardizeFeatures)
Whether to standardize numerical features.
|
TrainingOptions |
setSubsample(Double subsample)
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree
models.
|
TrainingOptions |
setTfVersion(String tfVersion)
Based on the selected TF version, the corresponding docker image is used to train external
models.
|
TrainingOptions |
setTimeSeriesDataColumn(String timeSeriesDataColumn)
Column to be designated as time series data for ARIMA model.
|
TrainingOptions |
setTimeSeriesIdColumn(String timeSeriesIdColumn)
The time series id column that was used during ARIMA model training.
|
TrainingOptions |
setTimeSeriesIdColumns(List<String> timeSeriesIdColumns)
The time series id columns that were used during ARIMA model training.
|
TrainingOptions |
setTimeSeriesLengthFraction(Double timeSeriesLengthFraction)
The fraction of the interpolated length of the time series that's used to model the time series
trend component.
|
TrainingOptions |
setTimeSeriesTimestampColumn(String timeSeriesTimestampColumn)
Column to be designated as time series timestamp for ARIMA model.
|
TrainingOptions |
setTreeMethod(String treeMethod)
Tree construction algorithm for boosted tree models.
|
TrainingOptions |
setTrendSmoothingWindowSize(Long trendSmoothingWindowSize)
Smoothing window size for the trend component.
|
TrainingOptions |
setUserColumn(String userColumn)
User column specified for matrix factorization models.
|
TrainingOptions |
setVertexAiModelVersionAliases(List<String> vertexAiModelVersionAliases)
The version aliases to apply in Vertex AI model registry.
|
TrainingOptions |
setWalsAlpha(Double walsAlpha)
Hyperparameter for matrix factoration when implicit feedback type is specified.
|
TrainingOptions |
setWarmStart(Boolean warmStart)
Whether to train a model from the last checkpoint.
|
TrainingOptions |
setXgboostVersion(String xgboostVersion)
User-selected XGBoost versions for training of XGBoost models.
|
getFactory, setFactory, toPrettyString, toStringentrySet, equals, get, getClassInfo, getUnknownKeys, hashCode, put, putAll, remove, setUnknownKeysclear, containsKey, containsValue, isEmpty, keySet, size, valuesfinalize, getClass, notify, notifyAll, wait, wait, waitcompute, computeIfAbsent, computeIfPresent, forEach, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAllpublic String getActivationFn()
null for nonepublic TrainingOptions setActivationFn(String activationFn)
activationFn - activationFn or null for nonepublic Boolean getAdjustStepChanges()
null for nonepublic TrainingOptions setAdjustStepChanges(Boolean adjustStepChanges)
adjustStepChanges - adjustStepChanges or null for nonepublic Boolean getApproxGlobalFeatureContrib()
null for nonepublic TrainingOptions setApproxGlobalFeatureContrib(Boolean approxGlobalFeatureContrib)
approxGlobalFeatureContrib - approxGlobalFeatureContrib or null for nonepublic Boolean getAutoArima()
null for nonepublic TrainingOptions setAutoArima(Boolean autoArima)
autoArima - autoArima or null for nonepublic Long getAutoArimaMaxOrder()
null for nonepublic TrainingOptions setAutoArimaMaxOrder(Long autoArimaMaxOrder)
autoArimaMaxOrder - autoArimaMaxOrder or null for nonepublic Long getAutoArimaMinOrder()
null for nonepublic TrainingOptions setAutoArimaMinOrder(Long autoArimaMinOrder)
autoArimaMinOrder - autoArimaMinOrder or null for nonepublic Boolean getAutoClassWeights()
null for nonepublic TrainingOptions setAutoClassWeights(Boolean autoClassWeights)
autoClassWeights - autoClassWeights or null for nonepublic Long getBatchSize()
null for nonepublic TrainingOptions setBatchSize(Long batchSize)
batchSize - batchSize or null for nonepublic String getBoosterType()
null for nonepublic TrainingOptions setBoosterType(String boosterType)
boosterType - boosterType or null for nonepublic Double getBudgetHours()
null for nonepublic TrainingOptions setBudgetHours(Double budgetHours)
budgetHours - budgetHours or null for nonepublic Boolean getCalculatePValues()
null for nonepublic TrainingOptions setCalculatePValues(Boolean calculatePValues)
calculatePValues - calculatePValues or null for nonepublic String getCategoryEncodingMethod()
null for nonepublic TrainingOptions setCategoryEncodingMethod(String categoryEncodingMethod)
categoryEncodingMethod - categoryEncodingMethod or null for nonepublic Boolean getCleanSpikesAndDips()
null for nonepublic TrainingOptions setCleanSpikesAndDips(Boolean cleanSpikesAndDips)
cleanSpikesAndDips - cleanSpikesAndDips or null for nonepublic String getColorSpace()
null for nonepublic TrainingOptions setColorSpace(String colorSpace)
colorSpace - colorSpace or null for nonepublic Double getColsampleBylevel()
null for nonepublic TrainingOptions setColsampleBylevel(Double colsampleBylevel)
colsampleBylevel - colsampleBylevel or null for nonepublic Double getColsampleBynode()
null for nonepublic TrainingOptions setColsampleBynode(Double colsampleBynode)
colsampleBynode - colsampleBynode or null for nonepublic Double getColsampleBytree()
null for nonepublic TrainingOptions setColsampleBytree(Double colsampleBytree)
colsampleBytree - colsampleBytree or null for nonepublic String getContributionMetric()
null for nonepublic TrainingOptions setContributionMetric(String contributionMetric)
contributionMetric - contributionMetric or null for nonepublic String getDartNormalizeType()
null for nonepublic TrainingOptions setDartNormalizeType(String dartNormalizeType)
dartNormalizeType - dartNormalizeType or null for nonepublic String getDataFrequency()
null for nonepublic TrainingOptions setDataFrequency(String dataFrequency)
dataFrequency - dataFrequency or null for nonepublic String getDataSplitColumn()
null for nonepublic TrainingOptions setDataSplitColumn(String dataSplitColumn)
dataSplitColumn - dataSplitColumn or null for nonepublic Double getDataSplitEvalFraction()
null for nonepublic TrainingOptions setDataSplitEvalFraction(Double dataSplitEvalFraction)
dataSplitEvalFraction - dataSplitEvalFraction or null for nonepublic String getDataSplitMethod()
null for nonepublic TrainingOptions setDataSplitMethod(String dataSplitMethod)
dataSplitMethod - dataSplitMethod or null for nonepublic Boolean getDecomposeTimeSeries()
null for nonepublic TrainingOptions setDecomposeTimeSeries(Boolean decomposeTimeSeries)
decomposeTimeSeries - decomposeTimeSeries or null for nonepublic List<String> getDimensionIdColumns()
null for nonepublic TrainingOptions setDimensionIdColumns(List<String> dimensionIdColumns)
dimensionIdColumns - dimensionIdColumns or null for nonepublic String getDistanceType()
null for nonepublic TrainingOptions setDistanceType(String distanceType)
distanceType - distanceType or null for nonepublic Double getDropout()
null for nonepublic TrainingOptions setDropout(Double dropout)
dropout - dropout or null for nonepublic Boolean getEarlyStop()
null for nonepublic TrainingOptions setEarlyStop(Boolean earlyStop)
earlyStop - earlyStop or null for nonepublic Boolean getEnableGlobalExplain()
null for nonepublic TrainingOptions setEnableGlobalExplain(Boolean enableGlobalExplain)
enableGlobalExplain - enableGlobalExplain or null for nonepublic String getEndpointIdleTtl()
null for nonepublic TrainingOptions setEndpointIdleTtl(String endpointIdleTtl)
endpointIdleTtl - endpointIdleTtl or null for nonepublic String getFeedbackType()
null for nonepublic TrainingOptions setFeedbackType(String feedbackType)
feedbackType - feedbackType or null for nonepublic Boolean getFitIntercept()
null for nonepublic TrainingOptions setFitIntercept(Boolean fitIntercept)
fitIntercept - fitIntercept or null for nonepublic Double getForecastLimitLowerBound()
null for nonepublic TrainingOptions setForecastLimitLowerBound(Double forecastLimitLowerBound)
forecastLimitLowerBound - forecastLimitLowerBound or null for nonepublic Double getForecastLimitUpperBound()
null for nonepublic TrainingOptions setForecastLimitUpperBound(Double forecastLimitUpperBound)
forecastLimitUpperBound - forecastLimitUpperBound or null for nonepublic List<Long> getHiddenUnits()
null for nonepublic TrainingOptions setHiddenUnits(List<Long> hiddenUnits)
hiddenUnits - hiddenUnits or null for nonepublic String getHolidayRegion()
null for nonepublic TrainingOptions setHolidayRegion(String holidayRegion)
holidayRegion - holidayRegion or null for nonepublic List<String> getHolidayRegions()
null for nonepublic TrainingOptions setHolidayRegions(List<String> holidayRegions)
holidayRegions - holidayRegions or null for nonepublic Long getHorizon()
null for nonepublic TrainingOptions setHorizon(Long horizon)
horizon - horizon or null for nonepublic List<String> getHparamTuningObjectives()
null for nonepublic TrainingOptions setHparamTuningObjectives(List<String> hparamTuningObjectives)
hparamTuningObjectives - hparamTuningObjectives or null for nonepublic String getHuggingFaceModelId()
null for nonepublic TrainingOptions setHuggingFaceModelId(String huggingFaceModelId)
huggingFaceModelId - huggingFaceModelId or null for nonepublic Boolean getIncludeDrift()
null for nonepublic TrainingOptions setIncludeDrift(Boolean includeDrift)
includeDrift - includeDrift or null for nonepublic Double getInitialLearnRate()
null for nonepublic TrainingOptions setInitialLearnRate(Double initialLearnRate)
initialLearnRate - initialLearnRate or null for nonepublic List<String> getInputLabelColumns()
null for nonepublic TrainingOptions setInputLabelColumns(List<String> inputLabelColumns)
inputLabelColumns - inputLabelColumns or null for nonepublic String getInstanceWeightColumn()
null for nonepublic TrainingOptions setInstanceWeightColumn(String instanceWeightColumn)
instanceWeightColumn - instanceWeightColumn or null for nonepublic Long getIntegratedGradientsNumSteps()
null for nonepublic TrainingOptions setIntegratedGradientsNumSteps(Long integratedGradientsNumSteps)
integratedGradientsNumSteps - integratedGradientsNumSteps or null for nonepublic String getIsTestColumn()
null for nonepublic TrainingOptions setIsTestColumn(String isTestColumn)
isTestColumn - isTestColumn or null for nonepublic String getItemColumn()
null for nonepublic TrainingOptions setItemColumn(String itemColumn)
itemColumn - itemColumn or null for nonepublic String getKmeansInitializationColumn()
null for nonepublic TrainingOptions setKmeansInitializationColumn(String kmeansInitializationColumn)
kmeansInitializationColumn - kmeansInitializationColumn or null for nonepublic String getKmeansInitializationMethod()
null for nonepublic TrainingOptions setKmeansInitializationMethod(String kmeansInitializationMethod)
kmeansInitializationMethod - kmeansInitializationMethod or null for nonepublic Double getL1RegActivation()
null for nonepublic TrainingOptions setL1RegActivation(Double l1RegActivation)
l1RegActivation - l1RegActivation or null for nonepublic Double getL1Regularization()
null for nonepublic TrainingOptions setL1Regularization(Double l1Regularization)
l1Regularization - l1Regularization or null for nonepublic Double getL2Regularization()
null for nonepublic TrainingOptions setL2Regularization(Double l2Regularization)
l2Regularization - l2Regularization or null for nonepublic Map<String,Double> getLabelClassWeights()
null for nonepublic TrainingOptions setLabelClassWeights(Map<String,Double> labelClassWeights)
labelClassWeights - labelClassWeights or null for nonepublic Double getLearnRate()
null for nonepublic TrainingOptions setLearnRate(Double learnRate)
learnRate - learnRate or null for nonepublic String getLearnRateStrategy()
null for nonepublic TrainingOptions setLearnRateStrategy(String learnRateStrategy)
learnRateStrategy - learnRateStrategy or null for nonepublic String getLossType()
null for nonepublic TrainingOptions setLossType(String lossType)
lossType - lossType or null for nonepublic String getMachineType()
null for nonepublic TrainingOptions setMachineType(String machineType)
machineType - machineType or null for nonepublic Long getMaxIterations()
null for nonepublic TrainingOptions setMaxIterations(Long maxIterations)
maxIterations - maxIterations or null for nonepublic Long getMaxParallelTrials()
null for nonepublic TrainingOptions setMaxParallelTrials(Long maxParallelTrials)
maxParallelTrials - maxParallelTrials or null for nonepublic Long getMaxReplicaCount()
null for nonepublic TrainingOptions setMaxReplicaCount(Long maxReplicaCount)
maxReplicaCount - maxReplicaCount or null for nonepublic Long getMaxTimeSeriesLength()
null for nonepublic TrainingOptions setMaxTimeSeriesLength(Long maxTimeSeriesLength)
maxTimeSeriesLength - maxTimeSeriesLength or null for nonepublic Long getMaxTreeDepth()
null for nonepublic TrainingOptions setMaxTreeDepth(Long maxTreeDepth)
maxTreeDepth - maxTreeDepth or null for nonepublic Double getMinAprioriSupport()
null for nonepublic TrainingOptions setMinAprioriSupport(Double minAprioriSupport)
minAprioriSupport - minAprioriSupport or null for nonepublic Double getMinRelativeProgress()
null for nonepublic TrainingOptions setMinRelativeProgress(Double minRelativeProgress)
minRelativeProgress - minRelativeProgress or null for nonepublic Long getMinReplicaCount()
null for nonepublic TrainingOptions setMinReplicaCount(Long minReplicaCount)
minReplicaCount - minReplicaCount or null for nonepublic Double getMinSplitLoss()
null for nonepublic TrainingOptions setMinSplitLoss(Double minSplitLoss)
minSplitLoss - minSplitLoss or null for nonepublic Long getMinTimeSeriesLength()
null for nonepublic TrainingOptions setMinTimeSeriesLength(Long minTimeSeriesLength)
minTimeSeriesLength - minTimeSeriesLength or null for nonepublic Long getMinTreeChildWeight()
null for nonepublic TrainingOptions setMinTreeChildWeight(Long minTreeChildWeight)
minTreeChildWeight - minTreeChildWeight or null for nonepublic String getModelGardenModelName()
null for nonepublic TrainingOptions setModelGardenModelName(String modelGardenModelName)
modelGardenModelName - modelGardenModelName or null for nonepublic String getModelRegistry()
null for nonepublic TrainingOptions setModelRegistry(String modelRegistry)
modelRegistry - modelRegistry or null for nonepublic String getModelUri()
null for nonepublic TrainingOptions setModelUri(String modelUri)
modelUri - modelUri or null for nonepublic ArimaOrder getNonSeasonalOrder()
null for nonepublic TrainingOptions setNonSeasonalOrder(ArimaOrder nonSeasonalOrder)
nonSeasonalOrder - nonSeasonalOrder or null for nonepublic Long getNumClusters()
null for nonepublic TrainingOptions setNumClusters(Long numClusters)
numClusters - numClusters or null for nonepublic Long getNumFactors()
null for nonepublic TrainingOptions setNumFactors(Long numFactors)
numFactors - numFactors or null for nonepublic Long getNumParallelTree()
null for nonepublic TrainingOptions setNumParallelTree(Long numParallelTree)
numParallelTree - numParallelTree or null for nonepublic Long getNumPrincipalComponents()
null for nonepublic TrainingOptions setNumPrincipalComponents(Long numPrincipalComponents)
numPrincipalComponents - numPrincipalComponents or null for nonepublic Long getNumTrials()
null for nonepublic TrainingOptions setNumTrials(Long numTrials)
numTrials - numTrials or null for nonepublic String getOptimizationStrategy()
null for nonepublic TrainingOptions setOptimizationStrategy(String optimizationStrategy)
optimizationStrategy - optimizationStrategy or null for nonepublic String getOptimizer()
null for nonepublic TrainingOptions setOptimizer(String optimizer)
optimizer - optimizer or null for nonepublic Double getPcaExplainedVarianceRatio()
null for nonepublic TrainingOptions setPcaExplainedVarianceRatio(Double pcaExplainedVarianceRatio)
pcaExplainedVarianceRatio - pcaExplainedVarianceRatio or null for nonepublic String getPcaSolver()
null for nonepublic TrainingOptions setPcaSolver(String pcaSolver)
pcaSolver - pcaSolver or null for nonepublic String getReservationAffinityKey()
null for nonepublic TrainingOptions setReservationAffinityKey(String reservationAffinityKey)
reservationAffinityKey - reservationAffinityKey or null for nonepublic String getReservationAffinityType()
null for nonepublic TrainingOptions setReservationAffinityType(String reservationAffinityType)
reservationAffinityType - reservationAffinityType or null for nonepublic List<String> getReservationAffinityValues()
null for nonepublic TrainingOptions setReservationAffinityValues(List<String> reservationAffinityValues)
reservationAffinityValues - reservationAffinityValues or null for nonepublic Long getSampledShapleyNumPaths()
null for nonepublic TrainingOptions setSampledShapleyNumPaths(Long sampledShapleyNumPaths)
sampledShapleyNumPaths - sampledShapleyNumPaths or null for nonepublic Boolean getScaleFeatures()
null for nonepublic TrainingOptions setScaleFeatures(Boolean scaleFeatures)
scaleFeatures - scaleFeatures or null for nonepublic Boolean getStandardizeFeatures()
null for nonepublic TrainingOptions setStandardizeFeatures(Boolean standardizeFeatures)
standardizeFeatures - standardizeFeatures or null for nonepublic Double getSubsample()
null for nonepublic TrainingOptions setSubsample(Double subsample)
subsample - subsample or null for nonepublic String getTfVersion()
null for nonepublic TrainingOptions setTfVersion(String tfVersion)
tfVersion - tfVersion or null for nonepublic String getTimeSeriesDataColumn()
null for nonepublic TrainingOptions setTimeSeriesDataColumn(String timeSeriesDataColumn)
timeSeriesDataColumn - timeSeriesDataColumn or null for nonepublic String getTimeSeriesIdColumn()
null for nonepublic TrainingOptions setTimeSeriesIdColumn(String timeSeriesIdColumn)
timeSeriesIdColumn - timeSeriesIdColumn or null for nonepublic List<String> getTimeSeriesIdColumns()
null for nonepublic TrainingOptions setTimeSeriesIdColumns(List<String> timeSeriesIdColumns)
timeSeriesIdColumns - timeSeriesIdColumns or null for nonepublic Double getTimeSeriesLengthFraction()
null for nonepublic TrainingOptions setTimeSeriesLengthFraction(Double timeSeriesLengthFraction)
timeSeriesLengthFraction - timeSeriesLengthFraction or null for nonepublic String getTimeSeriesTimestampColumn()
null for nonepublic TrainingOptions setTimeSeriesTimestampColumn(String timeSeriesTimestampColumn)
timeSeriesTimestampColumn - timeSeriesTimestampColumn or null for nonepublic String getTreeMethod()
null for nonepublic TrainingOptions setTreeMethod(String treeMethod)
treeMethod - treeMethod or null for nonepublic Long getTrendSmoothingWindowSize()
null for nonepublic TrainingOptions setTrendSmoothingWindowSize(Long trendSmoothingWindowSize)
trendSmoothingWindowSize - trendSmoothingWindowSize or null for nonepublic String getUserColumn()
null for nonepublic TrainingOptions setUserColumn(String userColumn)
userColumn - userColumn or null for nonepublic List<String> getVertexAiModelVersionAliases()
null for nonepublic TrainingOptions setVertexAiModelVersionAliases(List<String> vertexAiModelVersionAliases)
vertexAiModelVersionAliases - vertexAiModelVersionAliases or null for nonepublic Double getWalsAlpha()
null for nonepublic TrainingOptions setWalsAlpha(Double walsAlpha)
walsAlpha - walsAlpha or null for nonepublic Boolean getWarmStart()
null for nonepublic TrainingOptions setWarmStart(Boolean warmStart)
warmStart - warmStart or null for nonepublic String getXgboostVersion()
null for nonepublic TrainingOptions setXgboostVersion(String xgboostVersion)
xgboostVersion - xgboostVersion or null for nonepublic TrainingOptions set(String fieldName, Object value)
set in class com.google.api.client.json.GenericJsonpublic TrainingOptions clone()
clone in class com.google.api.client.json.GenericJsonCopyright © 2011–2025 Google. All rights reserved.