public final class XPSConfidenceMetricsEntry
extends com.google.api.client.json.GenericJson
This is the Java data model class that specifies how to parse/serialize into the JSON that is transmitted over HTTP when working with the Cloud Natural Language API. For a detailed explanation see: https://developers.google.com/api-client-library/java/google-http-java-client/json
com.google.api.client.util.GenericData.FlagsAbstractMap.SimpleEntry<K,V>, AbstractMap.SimpleImmutableEntry<K,V>| Constructor and Description |
|---|
XPSConfidenceMetricsEntry() |
| Modifier and Type | Method and Description |
|---|---|
XPSConfidenceMetricsEntry |
clone() |
Float |
getConfidenceThreshold()
Metrics are computed with an assumption that the model never return predictions with score
lower than this value.
|
Float |
getF1Score()
The harmonic mean of recall and precision.
|
Float |
getF1ScoreAt1()
The harmonic mean of recall_at1 and precision_at1.
|
Long |
getFalseNegativeCount()
The number of ground truth labels that are not matched by a model created label.
|
Long |
getFalsePositiveCount()
The number of model created labels that do not match a ground truth label.
|
Float |
getFalsePositiveRate()
False Positive Rate for the given confidence threshold.
|
Float |
getFalsePositiveRateAt1()
The False Positive Rate when only considering the label that has the highest prediction score
and not below the confidence threshold for each example.
|
Integer |
getPositionThreshold()
Metrics are computed with an assumption that the model always returns at most this many
predictions (ordered by their score, descendingly), but they all still need to meet the
confidence_threshold.
|
Float |
getPrecision()
Precision for the given confidence threshold.
|
Float |
getPrecisionAt1()
The precision when only considering the label that has the highest prediction score and not
below the confidence threshold for each example.
|
Float |
getRecall()
Recall (true positive rate) for the given confidence threshold.
|
Float |
getRecallAt1()
The recall (true positive rate) when only considering the label that has the highest prediction
score and not below the confidence threshold for each example.
|
Long |
getTrueNegativeCount()
The number of labels that were not created by the model, but if they would, they would not
match a ground truth label.
|
Long |
getTruePositiveCount()
The number of model created labels that match a ground truth label.
|
XPSConfidenceMetricsEntry |
set(String fieldName,
Object value) |
XPSConfidenceMetricsEntry |
setConfidenceThreshold(Float confidenceThreshold)
Metrics are computed with an assumption that the model never return predictions with score
lower than this value.
|
XPSConfidenceMetricsEntry |
setF1Score(Float f1Score)
The harmonic mean of recall and precision.
|
XPSConfidenceMetricsEntry |
setF1ScoreAt1(Float f1ScoreAt1)
The harmonic mean of recall_at1 and precision_at1.
|
XPSConfidenceMetricsEntry |
setFalseNegativeCount(Long falseNegativeCount)
The number of ground truth labels that are not matched by a model created label.
|
XPSConfidenceMetricsEntry |
setFalsePositiveCount(Long falsePositiveCount)
The number of model created labels that do not match a ground truth label.
|
XPSConfidenceMetricsEntry |
setFalsePositiveRate(Float falsePositiveRate)
False Positive Rate for the given confidence threshold.
|
XPSConfidenceMetricsEntry |
setFalsePositiveRateAt1(Float falsePositiveRateAt1)
The False Positive Rate when only considering the label that has the highest prediction score
and not below the confidence threshold for each example.
|
XPSConfidenceMetricsEntry |
setPositionThreshold(Integer positionThreshold)
Metrics are computed with an assumption that the model always returns at most this many
predictions (ordered by their score, descendingly), but they all still need to meet the
confidence_threshold.
|
XPSConfidenceMetricsEntry |
setPrecision(Float precision)
Precision for the given confidence threshold.
|
XPSConfidenceMetricsEntry |
setPrecisionAt1(Float precisionAt1)
The precision when only considering the label that has the highest prediction score and not
below the confidence threshold for each example.
|
XPSConfidenceMetricsEntry |
setRecall(Float recall)
Recall (true positive rate) for the given confidence threshold.
|
XPSConfidenceMetricsEntry |
setRecallAt1(Float recallAt1)
The recall (true positive rate) when only considering the label that has the highest prediction
score and not below the confidence threshold for each example.
|
XPSConfidenceMetricsEntry |
setTrueNegativeCount(Long trueNegativeCount)
The number of labels that were not created by the model, but if they would, they would not
match a ground truth label.
|
XPSConfidenceMetricsEntry |
setTruePositiveCount(Long truePositiveCount)
The number of model created labels that match a ground truth label.
|
getFactory, setFactory, toPrettyString, toStringentrySet, equals, get, getClassInfo, getUnknownKeys, hashCode, put, putAll, remove, setUnknownKeysclear, containsKey, containsValue, isEmpty, keySet, size, valuesfinalize, getClass, notify, notifyAll, wait, wait, waitcompute, computeIfAbsent, computeIfPresent, forEach, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAllpublic Float getConfidenceThreshold()
null for nonepublic XPSConfidenceMetricsEntry setConfidenceThreshold(Float confidenceThreshold)
confidenceThreshold - confidenceThreshold or null for nonepublic Float getF1Score()
null for nonepublic XPSConfidenceMetricsEntry setF1Score(Float f1Score)
f1Score - f1Score or null for nonepublic Float getF1ScoreAt1()
null for nonepublic XPSConfidenceMetricsEntry setF1ScoreAt1(Float f1ScoreAt1)
f1ScoreAt1 - f1ScoreAt1 or null for nonepublic Long getFalseNegativeCount()
null for nonepublic XPSConfidenceMetricsEntry setFalseNegativeCount(Long falseNegativeCount)
falseNegativeCount - falseNegativeCount or null for nonepublic Long getFalsePositiveCount()
null for nonepublic XPSConfidenceMetricsEntry setFalsePositiveCount(Long falsePositiveCount)
falsePositiveCount - falsePositiveCount or null for nonepublic Float getFalsePositiveRate()
null for nonepublic XPSConfidenceMetricsEntry setFalsePositiveRate(Float falsePositiveRate)
falsePositiveRate - falsePositiveRate or null for nonepublic Float getFalsePositiveRateAt1()
null for nonepublic XPSConfidenceMetricsEntry setFalsePositiveRateAt1(Float falsePositiveRateAt1)
falsePositiveRateAt1 - falsePositiveRateAt1 or null for nonepublic Integer getPositionThreshold()
null for nonepublic XPSConfidenceMetricsEntry setPositionThreshold(Integer positionThreshold)
positionThreshold - positionThreshold or null for nonepublic Float getPrecision()
null for nonepublic XPSConfidenceMetricsEntry setPrecision(Float precision)
precision - precision or null for nonepublic Float getPrecisionAt1()
null for nonepublic XPSConfidenceMetricsEntry setPrecisionAt1(Float precisionAt1)
precisionAt1 - precisionAt1 or null for nonepublic Float getRecall()
null for nonepublic XPSConfidenceMetricsEntry setRecall(Float recall)
recall - recall or null for nonepublic Float getRecallAt1()
null for nonepublic XPSConfidenceMetricsEntry setRecallAt1(Float recallAt1)
recallAt1 - recallAt1 or null for nonepublic Long getTrueNegativeCount()
null for nonepublic XPSConfidenceMetricsEntry setTrueNegativeCount(Long trueNegativeCount)
trueNegativeCount - trueNegativeCount or null for nonepublic Long getTruePositiveCount()
null for nonepublic XPSConfidenceMetricsEntry setTruePositiveCount(Long truePositiveCount)
truePositiveCount - truePositiveCount or null for nonepublic XPSConfidenceMetricsEntry set(String fieldName, Object value)
set in class com.google.api.client.json.GenericJsonpublic XPSConfidenceMetricsEntry clone()
clone in class com.google.api.client.json.GenericJsonCopyright © 2011–2025 Google. All rights reserved.