Constructor
new PredictionServiceClient(optionsopt)
Construct an instance of PredictionServiceClient.
Parameters:
| Name | Type | Attributes | Description | ||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
options |
object |
<optional> |
The configuration object. See the subsequent parameters for more details. Properties
|
Members
(static) apiEndpoint
The DNS address for this API service - same as servicePath(), exists for compatibility reasons.
(static) port
The port for this API service.
(static) scopes
The scopes needed to make gRPC calls for every method defined in this service.
(static) servicePath
The DNS address for this API service.
Methods
batchPredict(request, optionsopt, callbackopt) → {Promise}
Perform a batch prediction. Unlike the online Predict, batch prediction result won't be immediately available in the response. Instead, a long running operation object is returned. User can poll the operation result via GetOperation method. Once the operation is done, BatchPredictResult is returned in the response field. Available for following ML problems:
- Image Classification
- Image Object Detection
- Video Classification
- Video Object Tracking * Text Extraction
- Tables
Parameters:
| Name | Type | Attributes | Description | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||||||
options |
Object |
<optional> |
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
||||||||||||||||||||
callback |
function |
<optional> |
The function which will be called with the result of the API call. The second parameter to the callback is a gax.Operation object. |
Example
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.PredictionServiceClient({
// optional auth parameters.
});
const formattedName = client.modelPath('[PROJECT]', '[LOCATION]', '[MODEL]');
const inputConfig = {};
const outputConfig = {};
const request = {
name: formattedName,
inputConfig: inputConfig,
outputConfig: outputConfig,
};
// Handle the operation using the promise pattern.
client.batchPredict(request)
.then(responses => {
const [operation, initialApiResponse] = responses;
// Operation#promise starts polling for the completion of the LRO.
return operation.promise();
})
.then(responses => {
const result = responses[0];
const metadata = responses[1];
const finalApiResponse = responses[2];
})
.catch(err => {
console.error(err);
});
const formattedName = client.modelPath('[PROJECT]', '[LOCATION]', '[MODEL]');
const inputConfig = {};
const outputConfig = {};
const request = {
name: formattedName,
inputConfig: inputConfig,
outputConfig: outputConfig,
};
// Handle the operation using the event emitter pattern.
client.batchPredict(request)
.then(responses => {
const [operation, initialApiResponse] = responses;
// Adding a listener for the "complete" event starts polling for the
// completion of the operation.
operation.on('complete', (result, metadata, finalApiResponse) => {
// doSomethingWith(result);
});
// Adding a listener for the "progress" event causes the callback to be
// called on any change in metadata when the operation is polled.
operation.on('progress', (metadata, apiResponse) => {
// doSomethingWith(metadata)
});
// Adding a listener for the "error" event handles any errors found during polling.
operation.on('error', err => {
// throw(err);
});
})
.catch(err => {
console.error(err);
});
const formattedName = client.modelPath('[PROJECT]', '[LOCATION]', '[MODEL]');
const inputConfig = {};
const outputConfig = {};
const request = {
name: formattedName,
inputConfig: inputConfig,
outputConfig: outputConfig,
};
// Handle the operation using the await pattern.
const [operation] = await client.batchPredict(request);
const [response] = await operation.promise();
getProjectId(callback)
Return the project ID used by this class.
Parameters:
| Name | Type | Description |
|---|---|---|
callback |
function |
the callback to be called with the current project Id. |
matchLocationFromModelName(modelName) → {String}
Parse the modelName from a model resource.
Parameters:
| Name | Type | Description |
|---|---|---|
modelName |
String |
A fully-qualified path representing a model resources. |
matchModelFromModelName(modelName) → {String}
Parse the modelName from a model resource.
Parameters:
| Name | Type | Description |
|---|---|---|
modelName |
String |
A fully-qualified path representing a model resources. |
matchProjectFromModelName(modelName) → {String}
Parse the modelName from a model resource.
Parameters:
| Name | Type | Description |
|---|---|---|
modelName |
String |
A fully-qualified path representing a model resources. |
modelPath(project, location, model) → {String}
Return a fully-qualified model resource name string.
Parameters:
| Name | Type | Description |
|---|---|---|
project |
String | |
location |
String | |
model |
String |
predict(request, optionsopt, callbackopt) → {Promise}
Perform an online prediction. The prediction result will be directly returned in the response. Available for following ML problems, and their expected request payloads:
- Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB.
- Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB.
- Text Classification - TextSnippet, content up to 60,000 characters, UTF-8 encoded.
- Text Extraction - TextSnippet, content up to 30,000 characters, UTF-8 NFC encoded.
- Translation - TextSnippet, content up to 25,000 characters, UTF-8 encoded.
- Tables - Row, with column values matching the columns of the model, up to 5MB. Not available for FORECASTING
prediction_type.
- Text Sentiment - TextSnippet, content up 500 characters, UTF-8 encoded.
Parameters:
| Name | Type | Attributes | Description | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||
options |
Object |
<optional> |
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
||||||||||||||||
callback |
function |
<optional> |
The function which will be called with the result of the API call. The second parameter to the callback is an object representing PredictResponse. |
Example
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.PredictionServiceClient({
// optional auth parameters.
});
const formattedName = client.modelPath('[PROJECT]', '[LOCATION]', '[MODEL]');
const payload = {};
const request = {
name: formattedName,
payload: payload,
};
client.predict(request)
.then(responses => {
const response = responses[0];
// doThingsWith(response)
})
.catch(err => {
console.error(err);
});