Constructor
new AutoMlClient(optionsopt, gaxInstanceopt)
Construct an instance of AutoMlClient.
Parameters:
Name | Type | Attributes | Description | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
options |
object |
<optional> |
The configuration object. The options accepted by the constructor are described in detail in this document. The common options are: Properties
|
||||||||||||||||||||||||||||||||||||||||||||||||
gaxInstance |
gax |
<optional> |
loaded instance of |
Members
apiEndpoint
The DNS address for this API service - same as servicePath(), exists for compatibility reasons.
port
The port for this API service.
scopes
The scopes needed to make gRPC calls for every method defined in this service.
servicePath
The DNS address for this API service.
Methods
annotationSpecPath(project, location, dataset, annotation_spec) → {string}
Return a fully-qualified annotationSpec resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
dataset |
string | |
annotation_spec |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
(async) checkCreateModelProgress(name) → {Promise}
Check the status of the long running operation returned by createModel()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the parent project where the model is being created.
*/
// const parent = 'abc123'
/**
* Required. The model to create.
*/
// const model = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callCreateModel() {
// Construct request
const request = {
parent,
model,
};
// Run request
const [operation] = await automlClient.createModel(request);
const [response] = await operation.promise();
console.log(response);
}
callCreateModel();
(async) checkDeleteDatasetProgress(name) → {Promise}
Check the status of the long running operation returned by deleteDataset()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to delete.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteDataset() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteDataset(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteDataset();
(async) checkDeleteModelProgress(name) → {Promise}
Check the status of the long running operation returned by deleteModel()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model being deleted.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteModel();
(async) checkDeployModelProgress(name) → {Promise}
Check the status of the long running operation returned by deployModel()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Model deployment metadata specific to Image Object Detection.
*/
// const imageObjectDetectionModelDeploymentMetadata = {}
/**
* Model deployment metadata specific to Image Classification.
*/
// const imageClassificationModelDeploymentMetadata = {}
/**
* Required. Resource name of the model to deploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeployModel();
(async) checkExportDataProgress(name) → {Promise}
Check the status of the long running operation returned by exportData()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset.
*/
// const name = 'abc123'
/**
* Required. The desired output location.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportData() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportData(request);
const [response] = await operation.promise();
console.log(response);
}
callExportData();
(async) checkExportEvaluatedExamplesProgress(name) → {Promise}
Check the status of the long running operation returned by exportEvaluatedExamples()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model whose evaluated examples are to
* be exported.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportEvaluatedExamples() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportEvaluatedExamples(request);
const [response] = await operation.promise();
console.log(response);
}
callExportEvaluatedExamples();
(async) checkExportModelProgress(name) → {Promise}
Check the status of the long running operation returned by exportModel()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model to export.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportModel() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportModel(request);
const [response] = await operation.promise();
console.log(response);
}
callExportModel();
(async) checkImportDataProgress(name) → {Promise}
Check the status of the long running operation returned by importData()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Dataset name. Dataset must already exist. All imported
* annotations and examples will be added.
*/
// const name = 'abc123'
/**
* Required. The desired input location and its domain specific semantics,
* if any.
*/
// const inputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callImportData() {
// Construct request
const request = {
name,
inputConfig,
};
// Run request
const [operation] = await automlClient.importData(request);
const [response] = await operation.promise();
console.log(response);
}
callImportData();
(async) checkUndeployModelProgress(name) → {Promise}
Check the status of the long running operation returned by undeployModel()
.
Parameters:
Name | Type | Description |
---|---|---|
name |
String |
The operation name that will be passed. |
Returns:
Type | Description |
---|---|
Promise |
|
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model to undeploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUndeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.undeployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callUndeployModel();
close() → {Promise}
Terminate the gRPC channel and close the client.
The client will no longer be usable and all future behavior is undefined.
Returns:
Type | Description |
---|---|
Promise |
A promise that resolves when the client is closed. |
columnSpecPath(project, location, dataset, table_spec, column_spec) → {string}
Return a fully-qualified columnSpec resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
dataset |
string | |
table_spec |
string | |
column_spec |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
datasetPath(project, location, dataset) → {string}
Return a fully-qualified dataset resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
dataset |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
getProjectId() → {Promise}
Return the project ID used by this class.
Returns:
Type | Description |
---|---|
Promise |
A promise that resolves to string containing the project ID. |
initialize() → {Promise}
Initialize the client. Performs asynchronous operations (such as authentication) and prepares the client. This function will be called automatically when any class method is called for the first time, but if you need to initialize it before calling an actual method, feel free to call initialize() directly.
You can await on this method if you want to make sure the client is initialized.
Returns:
Type | Description |
---|---|
Promise |
A promise that resolves to an authenticated service stub. |
listColumnSpecsAsync(request, optionsopt) → {Object}
Equivalent to listColumnSpecs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Parameters:
Name | Type | Attributes | Description | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Object |
An iterable Object that allows async iteration. When you iterate the returned iterable, each element will be an object representing ColumnSpec. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the documentation for more details and examples. |
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the table spec to list column specs from.
*/
// const parent = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
/**
* Filter expression, see go/filtering.
*/
// const filter = 'abc123'
/**
* Requested page size. The server can return fewer results than requested.
* If unspecified, the server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained from the
* ListColumnSpecsResponse.next_page_token google.cloud.automl.v1beta1.ListColumnSpecsResponse.next_page_token field of the previous
* AutoMl.ListColumnSpecs google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListColumnSpecs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listColumnSpecsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListColumnSpecs();
listColumnSpecsStream(request, optionsopt) → {Stream}
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Parameters:
Name | Type | Attributes | Description | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Stream |
An object stream which emits an object representing ColumnSpec on 'data' event.
The client library will perform auto-pagination by default: it will call the API as many
times as needed. Note that it can affect your quota.
We recommend using |
listDatasetsAsync(request, optionsopt) → {Object}
Equivalent to listDatasets
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Object |
An iterable Object that allows async iteration. When you iterate the returned iterable, each element will be an object representing Dataset. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the documentation for more details and examples. |
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the project from which to list datasets.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `dataset_metadata` - for existence of the case (e.g.
* `image_classification_dataset_metadata:*`). Some examples of
* using the filter are:
* * `translation_dataset_metadata:*` --> The dataset has
* `translation_dataset_metadata`.
*/
// const filter = 'abc123'
/**
* Requested page size. Server may return fewer results than requested.
* If unspecified, server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return
* Typically obtained via
* ListDatasetsResponse.next_page_token google.cloud.automl.v1beta1.ListDatasetsResponse.next_page_token of the previous
* AutoMl.ListDatasets google.cloud.automl.v1beta1.AutoMl.ListDatasets call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListDatasets() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listDatasetsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListDatasets();
listDatasetsStream(request, optionsopt) → {Stream}
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Stream |
An object stream which emits an object representing Dataset on 'data' event.
The client library will perform auto-pagination by default: it will call the API as many
times as needed. Note that it can affect your quota.
We recommend using |
listModelEvaluationsAsync(request, optionsopt) → {Object}
Equivalent to listModelEvaluations
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Object |
An iterable Object that allows async iteration. When you iterate the returned iterable, each element will be an object representing ModelEvaluation. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the documentation for more details and examples. |
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model to list the model evaluations for.
* If modelId is set as "-", this will list model evaluations from across all
* models of the parent location.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `annotation_spec_id` - for =, != or existence. See example below for
* the last.
* Some examples of using the filter are:
* * `annotation_spec_id!=4` --> The model evaluation was done for
* annotation spec with ID different than 4.
* * `NOT annotation_spec_id:*` --> The model evaluation was done for
* aggregate of all annotation specs.
*/
// const filter = 'abc123'
/**
* Requested page size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained via
* ListModelEvaluationsResponse.next_page_token google.cloud.automl.v1beta1.ListModelEvaluationsResponse.next_page_token of the previous
* AutoMl.ListModelEvaluations google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListModelEvaluations() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listModelEvaluationsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListModelEvaluations();
listModelEvaluationsStream(request, optionsopt) → {Stream}
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Stream |
An object stream which emits an object representing ModelEvaluation on 'data' event.
The client library will perform auto-pagination by default: it will call the API as many
times as needed. Note that it can affect your quota.
We recommend using |
listModelsAsync(request, optionsopt) → {Object}
Equivalent to listModels
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Object |
An iterable Object that allows async iteration. When you iterate the returned iterable, each element will be an object representing Model. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the documentation for more details and examples. |
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the project, from which to list the models.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `model_metadata` - for existence of the case (e.g.
* `video_classification_model_metadata:*`).
* * `dataset_id` - for = or !=. Some examples of using the filter are:
* * `image_classification_model_metadata:*` --> The model has
* `image_classification_model_metadata`.
* * `dataset_id=5` --> The model was created from a dataset with ID 5.
*/
// const filter = 'abc123'
/**
* Requested page size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return
* Typically obtained via
* ListModelsResponse.next_page_token google.cloud.automl.v1beta1.ListModelsResponse.next_page_token of the previous
* AutoMl.ListModels google.cloud.automl.v1beta1.AutoMl.ListModels call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListModels() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listModelsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListModels();
listModelsStream(request, optionsopt) → {Stream}
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Parameters:
Name | Type | Attributes | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Stream |
An object stream which emits an object representing Model on 'data' event.
The client library will perform auto-pagination by default: it will call the API as many
times as needed. Note that it can affect your quota.
We recommend using |
listTableSpecsAsync(request, optionsopt) → {Object}
Equivalent to listTableSpecs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Parameters:
Name | Type | Attributes | Description | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Object |
An iterable Object that allows async iteration. When you iterate the returned iterable, each element will be an object representing TableSpec. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the documentation for more details and examples. |
Example
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to list table specs from.
*/
// const parent = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
/**
* Filter expression, see go/filtering.
*/
// const filter = 'abc123'
/**
* Requested page size. The server can return fewer results than requested.
* If unspecified, the server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained from the
* ListTableSpecsResponse.next_page_token google.cloud.automl.v1beta1.ListTableSpecsResponse.next_page_token field of the previous
* AutoMl.ListTableSpecs google.cloud.automl.v1beta1.AutoMl.ListTableSpecs call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListTableSpecs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listTableSpecsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListTableSpecs();
listTableSpecsStream(request, optionsopt) → {Stream}
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Parameters:
Name | Type | Attributes | Description | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
request |
Object |
The request object that will be sent. Properties
|
|||||||||||||||||||
options |
object |
<optional> |
Call options. See CallOptions for more details. |
Returns:
Type | Description |
---|---|
Stream |
An object stream which emits an object representing TableSpec on 'data' event.
The client library will perform auto-pagination by default: it will call the API as many
times as needed. Note that it can affect your quota.
We recommend using |
locationPath(project, location) → {string}
Return a fully-qualified location resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName) → {string}
Parse the annotation_spec from AnnotationSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
annotationSpecName |
string |
A fully-qualified path representing AnnotationSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the annotation_spec. |
matchColumnSpecFromColumnSpecName(columnSpecName) → {string}
Parse the column_spec from ColumnSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
columnSpecName |
string |
A fully-qualified path representing ColumnSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the column_spec. |
matchDatasetFromAnnotationSpecName(annotationSpecName) → {string}
Parse the dataset from AnnotationSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
annotationSpecName |
string |
A fully-qualified path representing AnnotationSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the dataset. |
matchDatasetFromColumnSpecName(columnSpecName) → {string}
Parse the dataset from ColumnSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
columnSpecName |
string |
A fully-qualified path representing ColumnSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the dataset. |
matchDatasetFromDatasetName(datasetName) → {string}
Parse the dataset from Dataset resource.
Parameters:
Name | Type | Description |
---|---|---|
datasetName |
string |
A fully-qualified path representing Dataset resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the dataset. |
matchDatasetFromTableSpecName(tableSpecName) → {string}
Parse the dataset from TableSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
tableSpecName |
string |
A fully-qualified path representing TableSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the dataset. |
matchLocationFromAnnotationSpecName(annotationSpecName) → {string}
Parse the location from AnnotationSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
annotationSpecName |
string |
A fully-qualified path representing AnnotationSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromColumnSpecName(columnSpecName) → {string}
Parse the location from ColumnSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
columnSpecName |
string |
A fully-qualified path representing ColumnSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromDatasetName(datasetName) → {string}
Parse the location from Dataset resource.
Parameters:
Name | Type | Description |
---|---|---|
datasetName |
string |
A fully-qualified path representing Dataset resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromLocationName(locationName) → {string}
Parse the location from Location resource.
Parameters:
Name | Type | Description |
---|---|---|
locationName |
string |
A fully-qualified path representing Location resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromModelEvaluationName(modelEvaluationName) → {string}
Parse the location from ModelEvaluation resource.
Parameters:
Name | Type | Description |
---|---|---|
modelEvaluationName |
string |
A fully-qualified path representing ModelEvaluation resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromModelName(modelName) → {string}
Parse the location from Model resource.
Parameters:
Name | Type | Description |
---|---|---|
modelName |
string |
A fully-qualified path representing Model resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchLocationFromTableSpecName(tableSpecName) → {string}
Parse the location from TableSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
tableSpecName |
string |
A fully-qualified path representing TableSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the location. |
matchModelEvaluationFromModelEvaluationName(modelEvaluationName) → {string}
Parse the model_evaluation from ModelEvaluation resource.
Parameters:
Name | Type | Description |
---|---|---|
modelEvaluationName |
string |
A fully-qualified path representing ModelEvaluation resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the model_evaluation. |
matchModelFromModelEvaluationName(modelEvaluationName) → {string}
Parse the model from ModelEvaluation resource.
Parameters:
Name | Type | Description |
---|---|---|
modelEvaluationName |
string |
A fully-qualified path representing ModelEvaluation resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the model. |
matchModelFromModelName(modelName) → {string}
Parse the model from Model resource.
Parameters:
Name | Type | Description |
---|---|---|
modelName |
string |
A fully-qualified path representing Model resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the model. |
matchProjectFromAnnotationSpecName(annotationSpecName) → {string}
Parse the project from AnnotationSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
annotationSpecName |
string |
A fully-qualified path representing AnnotationSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromColumnSpecName(columnSpecName) → {string}
Parse the project from ColumnSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
columnSpecName |
string |
A fully-qualified path representing ColumnSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromDatasetName(datasetName) → {string}
Parse the project from Dataset resource.
Parameters:
Name | Type | Description |
---|---|---|
datasetName |
string |
A fully-qualified path representing Dataset resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromLocationName(locationName) → {string}
Parse the project from Location resource.
Parameters:
Name | Type | Description |
---|---|---|
locationName |
string |
A fully-qualified path representing Location resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromModelEvaluationName(modelEvaluationName) → {string}
Parse the project from ModelEvaluation resource.
Parameters:
Name | Type | Description |
---|---|---|
modelEvaluationName |
string |
A fully-qualified path representing ModelEvaluation resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromModelName(modelName) → {string}
Parse the project from Model resource.
Parameters:
Name | Type | Description |
---|---|---|
modelName |
string |
A fully-qualified path representing Model resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchProjectFromTableSpecName(tableSpecName) → {string}
Parse the project from TableSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
tableSpecName |
string |
A fully-qualified path representing TableSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the project. |
matchTableSpecFromColumnSpecName(columnSpecName) → {string}
Parse the table_spec from ColumnSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
columnSpecName |
string |
A fully-qualified path representing ColumnSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the table_spec. |
matchTableSpecFromTableSpecName(tableSpecName) → {string}
Parse the table_spec from TableSpec resource.
Parameters:
Name | Type | Description |
---|---|---|
tableSpecName |
string |
A fully-qualified path representing TableSpec resource. |
Returns:
Type | Description |
---|---|
string |
A string representing the table_spec. |
modelEvaluationPath(project, location, model, model_evaluation) → {string}
Return a fully-qualified modelEvaluation resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
model |
string | |
model_evaluation |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
modelPath(project, location, model) → {string}
Return a fully-qualified model resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
model |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |
tableSpecPath(project, location, dataset, table_spec) → {string}
Return a fully-qualified tableSpec resource name string.
Parameters:
Name | Type | Description |
---|---|---|
project |
string | |
location |
string | |
dataset |
string | |
table_spec |
string |
Returns:
Type | Description |
---|---|
string |
Resource name string. |