Types for Google Cloud Aiplatform v1 API¶
- class google.cloud.aiplatform_v1.types.AcceleratorType(value)[source]¶
Bases:
Enum
Represents a hardware accelerator type.
- Values:
- ACCELERATOR_TYPE_UNSPECIFIED (0):
Unspecified accelerator type, which means no accelerator.
- NVIDIA_TESLA_K80 (1):
Deprecated: Nvidia Tesla K80 GPU has reached end of support, see https://cloud.google.com/compute/docs/eol/k80-eol.
- NVIDIA_TESLA_P100 (2):
Nvidia Tesla P100 GPU.
- NVIDIA_TESLA_V100 (3):
Nvidia Tesla V100 GPU.
- NVIDIA_TESLA_P4 (4):
Nvidia Tesla P4 GPU.
- NVIDIA_TESLA_T4 (5):
Nvidia Tesla T4 GPU.
- NVIDIA_TESLA_A100 (8):
Nvidia Tesla A100 GPU.
- NVIDIA_A100_80GB (9):
Nvidia A100 80GB GPU.
- NVIDIA_L4 (11):
Nvidia L4 GPU.
- NVIDIA_H100_80GB (13):
Nvidia H100 80Gb GPU.
- TPU_V2 (6):
TPU v2.
- TPU_V3 (7):
TPU v3.
- TPU_V4_POD (10):
TPU v4.
- TPU_V5_LITEPOD (12):
TPU v5.
- class google.cloud.aiplatform_v1.types.ActiveLearningConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- max_data_item_count¶
Max number of human labeled DataItems.
This field is a member of oneof
human_labeling_budget
.- Type:
- max_data_item_percentage¶
Max percent of total DataItems for human labeling.
This field is a member of oneof
human_labeling_budget
.- Type:
- sample_config¶
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
- training_config¶
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
- class google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
- context¶
Required. The resource name of the Context that the Artifacts and Executions belong to. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
- Type:
- class google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
- class google.cloud.aiplatform_v1.types.AddContextChildrenRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
- context¶
Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
- Type:
- class google.cloud.aiplatform_v1.types.AddContextChildrenResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
- class google.cloud.aiplatform_v1.types.AddExecutionEventsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
- execution¶
Required. The resource name of the Execution that the Events connect Artifacts with. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
- Type:
- events¶
The Events to create and add.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Event]
- class google.cloud.aiplatform_v1.types.AddExecutionEventsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
- class google.cloud.aiplatform_v1.types.AddTrialMeasurementRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.AddTrialMeasurement][google.cloud.aiplatform.v1.VizierService.AddTrialMeasurement].
- trial_name¶
Required. The name of the trial to add measurement. Format:
projects/{project}/locations/{location}/studies/{study}/trials/{trial}
- Type:
- measurement¶
Required. The measurement to be added to a Trial.
- class google.cloud.aiplatform_v1.types.Annotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.
- payload_schema_uri¶
Required. Google Cloud Storage URI points to a YAML file describing [payload][google.cloud.aiplatform.v1.Annotation.payload]. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/annotation/, note that the chosen schema must be consistent with the parent Dataset’s [metadata][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri].
- Type:
- payload¶
Required. The schema of the payload can be found in [payload_schema][google.cloud.aiplatform.v1.Annotation.payload_schema_uri].
- create_time¶
Output only. Timestamp when this Annotation was created.
- update_time¶
Output only. Timestamp when this Annotation was last updated.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- annotation_source¶
Output only. The source of the Annotation.
- labels¶
Optional. The labels with user-defined metadata to organize your Annotations.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Annotation(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each Annotation:
“aiplatform.googleapis.com/annotation_set_name”: optional, name of the UI’s annotation set this Annotation belongs to. If not set, the Annotation is not visible in the UI.
“aiplatform.googleapis.com/payload_schema”: output only, its value is the [payload_schema’s][google.cloud.aiplatform.v1.Annotation.payload_schema_uri] title.
- class google.cloud.aiplatform_v1.types.AnnotationSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Identifies a concept with which DataItems may be annotated with.
- display_name¶
Required. The user-defined name of the AnnotationSpec. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- create_time¶
Output only. Timestamp when this AnnotationSpec was created.
- update_time¶
Output only. Timestamp when AnnotationSpec was last updated.
- class google.cloud.aiplatform_v1.types.Artifact(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Instance of a general artifact.
- display_name¶
User provided display name of the Artifact. May be up to 128 Unicode characters.
- Type:
- uri¶
The uniform resource identifier of the artifact file. May be empty if there is no actual artifact file.
- Type:
- etag¶
An eTag used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Artifacts. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Artifact (System labels are excluded).
- create_time¶
Output only. Timestamp when this Artifact was created.
- update_time¶
Output only. Timestamp when this Artifact was last updated.
- state¶
The state of this Artifact. This is a property of the Artifact, and does not imply or capture any ongoing process. This property is managed by clients (such as Vertex AI Pipelines), and the system does not prescribe or check the validity of state transitions.
- schema_title¶
The title of the schema describing the metadata. Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- schema_version¶
The version of the schema in schema_name to use.
Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- metadata¶
Properties of the Artifact. Top level metadata keys’ heading and trailing spaces will be trimmed. The size of this field should not exceed 200KB.
- class State(value)[source]¶
Bases:
Enum
Describes the state of the Artifact.
- Values:
- STATE_UNSPECIFIED (0):
Unspecified state for the Artifact.
- PENDING (1):
A state used by systems like Vertex AI Pipelines to indicate that the underlying data item represented by this Artifact is being created.
- LIVE (2):
A state indicating that the Artifact should exist, unless something external to the system deletes it.
- class google.cloud.aiplatform_v1.types.AssignNotebookRuntimeOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.AssignNotebookRuntime].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.AssignNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.AssignNotebookRuntime].
- parent¶
Required. The resource name of the Location to get the NotebookRuntime assignment. Format:
projects/{project}/locations/{location}
- Type:
- notebook_runtime_template¶
Required. The resource name of the NotebookRuntimeTemplate based on which a NotebookRuntime will be assigned (reuse or create a new one).
- Type:
- notebook_runtime¶
Required. Provide runtime specific information (e.g. runtime owner, notebook id) used for NotebookRuntime assignment.
- class google.cloud.aiplatform_v1.types.Attribution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Attribution that explains a particular prediction output.
- baseline_output_value¶
Output only. Model predicted output if the input instance is constructed from the baselines of all the features defined in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs]. The field name of the output is determined by the key in [ExplanationMetadata.outputs][google.cloud.aiplatform.v1.ExplanationMetadata.outputs].
If the Model’s predicted output has multiple dimensions (rank > 1), this is the value in the output located by [output_index][google.cloud.aiplatform.v1.Attribution.output_index].
If there are multiple baselines, their output values are averaged.
- Type:
- instance_output_value¶
Output only. Model predicted output on the corresponding [explanation instance][ExplainRequest.instances]. The field name of the output is determined by the key in [ExplanationMetadata.outputs][google.cloud.aiplatform.v1.ExplanationMetadata.outputs].
If the Model predicted output has multiple dimensions, this is the value in the output located by [output_index][google.cloud.aiplatform.v1.Attribution.output_index].
- Type:
- feature_attributions¶
Output only. Attributions of each explained feature. Features are extracted from the [prediction instances][google.cloud.aiplatform.v1.ExplainRequest.instances] according to [explanation metadata for inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs].
The value is a struct, whose keys are the name of the feature. The values are how much the feature in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances] contributed to the predicted result.
The format of the value is determined by the feature’s input format:
If the feature is a scalar value, the attribution value is a [floating number][google.protobuf.Value.number_value].
If the feature is an array of scalar values, the attribution value is an [array][google.protobuf.Value.list_value].
If the feature is a struct, the attribution value is a [struct][google.protobuf.Value.struct_value]. The keys in the attribution value struct are the same as the keys in the feature struct. The formats of the values in the attribution struct are determined by the formats of the values in the feature struct.
The [ExplanationMetadata.feature_attributions_schema_uri][google.cloud.aiplatform.v1.ExplanationMetadata.feature_attributions_schema_uri] field, pointed to by the [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models] object, points to the schema file that describes the features and their attribution values (if it is populated).
- output_index¶
Output only. The index that locates the explained prediction output.
If the prediction output is a scalar value, output_index is not populated. If the prediction output has multiple dimensions, the length of the output_index list is the same as the number of dimensions of the output. The i-th element in output_index is the element index of the i-th dimension of the output vector. Indices start from 0.
- Type:
MutableSequence[int]
- output_display_name¶
Output only. The display name of the output identified by [output_index][google.cloud.aiplatform.v1.Attribution.output_index]. For example, the predicted class name by a multi-classification Model.
This field is only populated iff the Model predicts display names as a separate field along with the explained output. The predicted display name must has the same shape of the explained output, and can be located using output_index.
- Type:
- approximation_error¶
Output only. Error of [feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions] caused by approximation used in the explanation method. Lower value means more precise attributions.
For Sampled Shapley [attribution][google.cloud.aiplatform.v1.ExplanationParameters.sampled_shapley_attribution], increasing [path_count][google.cloud.aiplatform.v1.SampledShapleyAttribution.path_count] might reduce the error.
For Integrated Gradients [attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], increasing [step_count][google.cloud.aiplatform.v1.IntegratedGradientsAttribution.step_count] might reduce the error.
For [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], increasing [step_count][google.cloud.aiplatform.v1.XraiAttribution.step_count] might reduce the error.
See this introduction for more information.
- Type:
- class google.cloud.aiplatform_v1.types.AutomaticResources(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.
- min_replica_count¶
Immutable. The minimum number of replicas this DeployedModel will be always deployed on. If traffic against it increases, it may dynamically be deployed onto more replicas up to [max_replica_count][google.cloud.aiplatform.v1.AutomaticResources.max_replica_count], and as traffic decreases, some of these extra replicas may be freed. If the requested value is too large, the deployment will error.
- Type:
- max_replica_count¶
Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, a no upper bound for scaling under heavy traffic will be assume, though Vertex AI may be unable to scale beyond certain replica number.
- Type:
- class google.cloud.aiplatform_v1.types.AutoscalingMetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The metric specification that defines the target resource utilization (CPU utilization, accelerator’s duty cycle, and so on) for calculating the desired replica count.
- metric_name¶
Required. The resource metric name. Supported metrics:
For Online Prediction:
aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle
aiplatform.googleapis.com/prediction/online/cpu/utilization
- Type:
- class google.cloud.aiplatform_v1.types.AvroSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The storage details for Avro input content.
- gcs_source¶
Required. Google Cloud Storage location.
- class google.cloud.aiplatform_v1.types.BatchCancelPipelineJobsOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1.PipelineService.BatchCancelPipelineJobs].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.BatchCancelPipelineJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1.PipelineService.BatchCancelPipelineJobs].
- parent¶
Required. The name of the PipelineJobs’ parent resource. Format:
projects/{project}/locations/{location}
- Type:
- class google.cloud.aiplatform_v1.types.BatchCancelPipelineJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1.PipelineService.BatchCancelPipelineJobs].
- pipeline_jobs¶
PipelineJobs cancelled.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PipelineJob]
- class google.cloud.aiplatform_v1.types.BatchCreateFeaturesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform batch create Features.
- generic_metadata¶
Operation metadata for Feature.
- class google.cloud.aiplatform_v1.types.BatchCreateFeaturesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures]. Request message for [FeatureRegistryService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeatureRegistryService.BatchCreateFeatures].
- parent¶
Required. The resource name of the EntityType/FeatureGroup to create the batch of Features under. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
projects/{project}/locations/{location}/featureGroups/{feature_group}
- Type:
- requests¶
Required. The request message specifying the Features to create. All Features must be created under the same parent EntityType / FeatureGroup. The
parent
field in each child request message can be omitted. Ifparent
is set in a child request, then the value must match theparent
value in this request message.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.CreateFeatureRequest]
- class google.cloud.aiplatform_v1.types.BatchCreateFeaturesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures].
- features¶
The Features created.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Feature]
- class google.cloud.aiplatform_v1.types.BatchCreateTensorboardRunsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
- parent¶
Required. The resource name of the TensorboardExperiment to create the TensorboardRuns in. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
The parent field in the CreateTensorboardRunRequest messages must match this field.- Type:
- requests¶
Required. The request message specifying the TensorboardRuns to create. A maximum of 1000 TensorboardRuns can be created in a batch.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.CreateTensorboardRunRequest]
- class google.cloud.aiplatform_v1.types.BatchCreateTensorboardRunsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
- tensorboard_runs¶
The created TensorboardRuns.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardRun]
- class google.cloud.aiplatform_v1.types.BatchCreateTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
- parent¶
Required. The resource name of the TensorboardExperiment to create the TensorboardTimeSeries in. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
The TensorboardRuns referenced by the parent fields in the CreateTensorboardTimeSeriesRequest messages must be sub resources of this TensorboardExperiment.- Type:
- requests¶
Required. The request message specifying the TensorboardTimeSeries to create. A maximum of 1000 TensorboardTimeSeries can be created in a batch.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.CreateTensorboardTimeSeriesRequest]
- class google.cloud.aiplatform_v1.types.BatchCreateTensorboardTimeSeriesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
- tensorboard_time_series¶
The created TensorboardTimeSeries.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardTimeSeries]
- class google.cloud.aiplatform_v1.types.BatchDedicatedResources(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.
- machine_spec¶
Required. Immutable. The specification of a single machine.
- starting_replica_count¶
Immutable. The number of machine replicas used at the start of the batch operation. If not set, Vertex AI decides starting number, not greater than [max_replica_count][google.cloud.aiplatform.v1.BatchDedicatedResources.max_replica_count]
- Type:
- class google.cloud.aiplatform_v1.types.BatchDeletePipelineJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1.PipelineService.BatchDeletePipelineJobs].
- parent¶
Required. The name of the PipelineJobs’ parent resource. Format:
projects/{project}/locations/{location}
- Type:
- class google.cloud.aiplatform_v1.types.BatchDeletePipelineJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1.PipelineService.BatchDeletePipelineJobs].
- pipeline_jobs¶
PipelineJobs deleted.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PipelineJob]
- class google.cloud.aiplatform_v1.types.BatchImportEvaluatedAnnotationsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1.ModelService.BatchImportEvaluatedAnnotations]
- parent¶
Required. The name of the parent ModelEvaluationSlice resource. Format:
projects/{project}/locations/{location}/models/{model}/evaluations/{evaluation}/slices/{slice}
- Type:
- evaluated_annotations¶
Required. Evaluated annotations resource to be imported.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EvaluatedAnnotation]
- class google.cloud.aiplatform_v1.types.BatchImportEvaluatedAnnotationsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1.ModelService.BatchImportEvaluatedAnnotations]
- class google.cloud.aiplatform_v1.types.BatchImportModelEvaluationSlicesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
- parent¶
Required. The name of the parent ModelEvaluation resource. Format:
projects/{project}/locations/{location}/models/{model}/evaluations/{evaluation}
- Type:
- model_evaluation_slices¶
Required. Model evaluation slice resource to be imported.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelEvaluationSlice]
- class google.cloud.aiplatform_v1.types.BatchImportModelEvaluationSlicesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
- class google.cloud.aiplatform_v1.types.BatchMigrateResourcesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
- generic_metadata¶
The common part of the operation metadata.
- partial_results¶
Partial results that reflect the latest migration operation progress.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BatchMigrateResourcesOperationMetadata.PartialResult]
- class PartialResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a partial result in batch migration operation for one [MigrateResourceRequest][google.cloud.aiplatform.v1.MigrateResourceRequest].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- error¶
The error result of the migration request in case of failure.
This field is a member of oneof
result
.- Type:
google.rpc.status_pb2.Status
- request¶
It’s the same as the value in [BatchMigrateResourcesRequest.migrate_resource_requests][google.cloud.aiplatform.v1.BatchMigrateResourcesRequest.migrate_resource_requests].
- class google.cloud.aiplatform_v1.types.BatchMigrateResourcesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
- parent¶
Required. The location of the migrated resource will live in. Format:
projects/{project}/locations/{location}
- Type:
- migrate_resource_requests¶
Required. The request messages specifying the resources to migrate. They must be in the same location as the destination. Up to 50 resources can be migrated in one batch.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.MigrateResourceRequest]
- class google.cloud.aiplatform_v1.types.BatchMigrateResourcesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
- migrate_resource_responses¶
Successfully migrated resources.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.MigrateResourceResponse]
- class google.cloud.aiplatform_v1.types.BatchPredictionJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A job that uses a [Model][google.cloud.aiplatform.v1.BatchPredictionJob.model] to produce predictions on multiple [input instances][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
- model¶
The name of the Model resource that produces the predictions via this job, must share the same ancestor Location. Starting this job has no impact on any existing deployments of the Model and their resources. Exactly one of model and unmanaged_container_model must be set.
The model resource name may contain version id or version alias to specify the version. Example:
projects/{project}/locations/{location}/models/{model}@2
orprojects/{project}/locations/{location}/models/{model}@golden
if no version is specified, the default version will be deployed.The model resource could also be a publisher model. Example:
publishers/{publisher}/models/{model}
orprojects/{project}/locations/{location}/publishers/{publisher}/models/{model}
- Type:
- model_version_id¶
Output only. The version ID of the Model that produces the predictions via this job.
- Type:
- unmanaged_container_model¶
Contains model information necessary to perform batch prediction without requiring uploading to model registry. Exactly one of model and unmanaged_container_model must be set.
- input_config¶
Required. Input configuration of the instances on which predictions are performed. The schema of any single instance may be specified via the [Model’s][google.cloud.aiplatform.v1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
- instance_config¶
Configuration for how to convert batch prediction input instances to the prediction instances that are sent to the Model.
- model_parameters¶
The parameters that govern the predictions. The schema of the parameters may be specified via the [Model’s][google.cloud.aiplatform.v1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [parameters_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri].
- output_config¶
Required. The Configuration specifying where output predictions should be written. The schema of any single prediction may be specified as a concatenation of [Model’s][google.cloud.aiplatform.v1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri].
- dedicated_resources¶
The config of resources used by the Model during the batch prediction. If the Model [supports][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types] DEDICATED_RESOURCES this config may be provided (and the job will use these resources), if the Model doesn’t support AUTOMATIC_RESOURCES, this config must be provided.
- service_account¶
The service account that the DeployedModel’s container runs as. If not specified, a system generated one will be used, which has minimal permissions and the custom container, if used, may not have enough permission to access other Google Cloud resources.
Users deploying the Model must have the
iam.serviceAccounts.actAs
permission on this service account.- Type:
- manual_batch_tuning_parameters¶
Immutable. Parameters configuring the batch behavior. Currently only applicable when [dedicated_resources][google.cloud.aiplatform.v1.BatchPredictionJob.dedicated_resources] are used (in other cases Vertex AI does the tuning itself).
- generate_explanation¶
Generate explanation with the batch prediction results.
When set to
true
, the batch prediction output changes based on thepredictions_format
field of the [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config] object:bigquery
: output includes a column namedexplanation
. The value is a struct that conforms to the [Explanation][google.cloud.aiplatform.v1.Explanation] object.jsonl
: The JSON objects on each line include an additional entry keyedexplanation
. The value of the entry is a JSON object that conforms to the [Explanation][google.cloud.aiplatform.v1.Explanation] object.csv
: Generating explanations for CSV format is not supported.
If this field is set to true, either the [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec] or [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] must be populated.
- Type:
- explanation_spec¶
Explanation configuration for this BatchPredictionJob. Can be specified only if [generate_explanation][google.cloud.aiplatform.v1.BatchPredictionJob.generate_explanation] is set to
true
.This value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] are optional in the request. If a field of the [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] object is not populated, the corresponding field of the [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec] object is inherited.
- output_info¶
Output only. Information further describing the output of this job.
- state¶
Output only. The detailed state of the job.
- error¶
Output only. Only populated when the job’s state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.
- Type:
google.rpc.status_pb2.Status
- partial_failures¶
Output only. Partial failures encountered. For example, single files that can’t be read. This field never exceeds 20 entries. Status details fields contain standard Google Cloud error details.
- Type:
MutableSequence[google.rpc.status_pb2.Status]
- resources_consumed¶
Output only. Information about resources that had been consumed by this job. Provided in real time at best effort basis, as well as a final value once the job completes.
Note: This field currently may be not populated for batch predictions that use AutoML Models.
- completion_stats¶
Output only. Statistics on completed and failed prediction instances.
- create_time¶
Output only. Time when the BatchPredictionJob was created.
- start_time¶
Output only. Time when the BatchPredictionJob for the first time entered the
JOB_STATE_RUNNING
state.
- end_time¶
Output only. Time when the BatchPredictionJob entered any of the following states:
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
,JOB_STATE_CANCELLED
.
- update_time¶
Output only. Time when the BatchPredictionJob was most recently updated.
- labels¶
The labels with user-defined metadata to organize BatchPredictionJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- encryption_spec¶
Customer-managed encryption key options for a BatchPredictionJob. If this is set, then all resources created by the BatchPredictionJob will be encrypted with the provided encryption key.
- disable_container_logging¶
For custom-trained Models and AutoML Tabular Models, the container of the DeployedModel instances will send
stderr
andstdout
streams to Cloud Logging by default. Please note that the logs incur cost, which are subject to Cloud Logging pricing.User can disable container logging by setting this flag to true.
- Type:
- class InputConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configures the input to [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] for Model’s supported input formats, and how instances should be expressed via any of them.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- gcs_source¶
The Cloud Storage location for the input instances.
This field is a member of oneof
source
.
- bigquery_source¶
The BigQuery location of the input table. The schema of the table should be in the format described by the given context OpenAPI Schema, if one is provided. The table may contain additional columns that are not described by the schema, and they will be ignored.
This field is a member of oneof
source
.
- class InstanceConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.
- instance_type¶
The format of the instance that the Model accepts. Vertex AI will convert compatible [batch prediction input instance formats][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.instances_format] to the specified format.
Supported values are:
object
: Each input is converted to JSON object format.For
bigquery
, each row is converted to an object.For
jsonl
, each line of the JSONL input must be an object.Does not apply to
csv
,file-list
,tf-record
, ortf-record-gzip
.
array
: Each input is converted to JSON array format.For
bigquery
, each row is converted to an array. The order of columns is determined by the BigQuery column order, unless [included_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.included_fields] is populated. [included_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.included_fields] must be populated for specifying field orders.For
jsonl
, if each line of the JSONL input is an object, [included_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.included_fields] must be populated for specifying field orders.Does not apply to
csv
,file-list
,tf-record
, ortf-record-gzip
.
If not specified, Vertex AI converts the batch prediction input as follows:
For
bigquery
andcsv
, the behavior is the same asarray
. The order of columns is the same as defined in the file or table, unless [included_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.included_fields] is populated.For
jsonl
, the prediction instance format is determined by each line of the input.For
tf-record
/tf-record-gzip
, each record will be converted to an object in the format of{"b64": <value>}
, where<value>
is the Base64-encoded string of the content of the record.For
file-list
, each file in the list will be converted to an object in the format of{"b64": <value>}
, where<value>
is the Base64-encoded string of the content of the file.
- Type:
- key_field¶
The name of the field that is considered as a key.
The values identified by the key field is not included in the transformed instances that is sent to the Model. This is similar to specifying this name of the field in [excluded_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.excluded_fields]. In addition, the batch prediction output will not include the instances. Instead the output will only include the value of the key field, in a field named
key
in the output:For
jsonl
output format, the output will have akey
field instead of theinstance
field.For
csv
/bigquery
output format, the output will have have akey
column instead of the instance feature columns.
The input must be JSONL with objects at each line, CSV, BigQuery or TfRecord.
- Type:
- included_fields¶
Fields that will be included in the prediction instance that is sent to the Model.
If [instance_type][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.instance_type] is
array
, the order of field names in included_fields also determines the order of the values in the array.When included_fields is populated, [excluded_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.excluded_fields] must be empty.
The input must be JSONL with objects at each line, BigQuery or TfRecord.
- Type:
MutableSequence[str]
- excluded_fields¶
Fields that will be excluded in the prediction instance that is sent to the Model.
Excluded will be attached to the batch prediction output if [key_field][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.key_field] is not specified.
When excluded_fields is populated, [included_fields][google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig.included_fields] must be empty.
The input must be JSONL with objects at each line, BigQuery or TfRecord.
- Type:
MutableSequence[str]
- class OutputConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configures the output of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats] for supported output formats, and how predictions are expressed via any of them.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- gcs_destination¶
The Cloud Storage location of the directory where the output is to be written to. In the given directory a new directory is created. Its name is
prediction-<model-display-name>-<job-create-time>
, where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. Inside of it filespredictions_0001.<extension>
,predictions_0002.<extension>
, …,predictions_N.<extension>
are created where<extension>
depends on chosen [predictions_format][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.predictions_format], and N may equal 0001 and depends on the total number of successfully predicted instances. If the Model has both [instance][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [prediction][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri] schemata defined then each such file contains predictions as per the [predictions_format][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.predictions_format]. If prediction for any instance failed (partially or completely), then an additionalerrors_0001.<extension>
,errors_0002.<extension>
,…,errors_N.<extension>
files are created (N depends on total number of failed predictions). These files contain the failed instances, as per their schema, followed by an additionalerror
field which as value has [google.rpc.Status][google.rpc.Status] containing onlycode
andmessage
fields.This field is a member of oneof
destination
.
- bigquery_destination¶
The BigQuery project or dataset location where the output is to be written to. If project is provided, a new dataset is created with name
prediction_<model-display-name>_<job-create-time>
where is made BigQuery-dataset-name compatible (for example, most special characters become underscores), and timestamp is in YYYY_MM_DDThh_mm_ss_sssZ “based on ISO-8601” format. In the dataset two tables will be created,predictions
, anderrors
. If the Model has both [instance][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [prediction][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri] schemata defined then the tables have columns as follows: Thepredictions
table contains instances for which the prediction succeeded, it has columns as per a concatenation of the Model’s instance and prediction schemata. Theerrors
table contains rows for which the prediction has failed, it has instance columns, as per the instance schema, followed by a single “errors” column, which as values has [google.rpc.Status][google.rpc.Status] represented as a STRUCT, and containing onlycode
andmessage
.This field is a member of oneof
destination
.
- class OutputInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Further describes this job’s output. Supplements [output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- gcs_output_directory¶
Output only. The full path of the Cloud Storage directory created, into which the prediction output is written.
This field is a member of oneof
output_location
.- Type:
- class google.cloud.aiplatform_v1.types.BatchReadFeatureValuesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that batch reads Feature values.
- generic_metadata¶
Operation metadata for Featurestore batch read Features values.
- class google.cloud.aiplatform_v1.types.BatchReadFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- csv_read_instances¶
Each read instance consists of exactly one read timestamp and one or more entity IDs identifying entities of the corresponding EntityTypes whose Features are requested.
Each output instance contains Feature values of requested entities concatenated together as of the read time.
An example read instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z
.An example output instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z, foo_entity_feature1_value, bar_entity_feature2_value
.Timestamp in each read instance must be millisecond-aligned.
csv_read_instances
are read instances stored in a plain-text CSV file. The header should be: [ENTITY_TYPE_ID1], [ENTITY_TYPE_ID2], …, timestampThe columns can be in any order.
Values in the timestamp column must use the RFC 3339 format, e.g.
2012-07-30T10:43:17.123Z
.This field is a member of oneof
read_option
.
- bigquery_read_instances¶
Similar to csv_read_instances, but from BigQuery source.
This field is a member of oneof
read_option
.
- featurestore¶
Required. The resource name of the Featurestore from which to query Feature values. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
- Type:
- destination¶
Required. Specifies output location and format.
- pass_through_fields¶
When not empty, the specified fields in the *_read_instances source will be joined as-is in the output, in addition to those fields from the Featurestore Entity.
For BigQuery source, the type of the pass-through values will be automatically inferred. For CSV source, the pass-through values will be passed as opaque bytes.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BatchReadFeatureValuesRequest.PassThroughField]
- entity_type_specs¶
Required. Specifies EntityType grouping Features to read values of and settings.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BatchReadFeatureValuesRequest.EntityTypeSpec]
- start_time¶
Optional. Excludes Feature values with feature generation timestamp before this timestamp. If not set, retrieve oldest values kept in Feature Store. Timestamp, if present, must not have higher than millisecond precision.
- class EntityTypeSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Selects Features of an EntityType to read values of and specifies read settings.
- entity_type_id¶
Required. ID of the EntityType to select Features. The EntityType id is the [entity_type_id][google.cloud.aiplatform.v1.CreateEntityTypeRequest.entity_type_id] specified during EntityType creation.
- Type:
- feature_selector¶
Required. Selectors choosing which Feature values to read from the EntityType.
- settings¶
Per-Feature settings for the batch read.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DestinationFeatureSetting]
- class google.cloud.aiplatform_v1.types.BatchReadFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
- class google.cloud.aiplatform_v1.types.BatchReadTensorboardTimeSeriesDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
- tensorboard¶
Required. The resource name of the Tensorboard containing TensorboardTimeSeries to read data from. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
. The TensorboardTimeSeries referenced by [time_series][google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest.time_series] must be sub resources of this Tensorboard.- Type:
- class google.cloud.aiplatform_v1.types.BatchReadTensorboardTimeSeriesDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
- time_series_data¶
The returned time series data.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TimeSeriesData]
- class google.cloud.aiplatform_v1.types.BigQueryDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The BigQuery location for the output content.
- output_uri¶
Required. BigQuery URI to a project or table, up to 2000 characters long.
When only the project is specified, the Dataset and Table is created. When the full table reference is specified, the Dataset must exist and table must not exist.
Accepted forms:
BigQuery path. For example:
bq://projectId
orbq://projectId.bqDatasetId
orbq://projectId.bqDatasetId.bqTableId
.
- Type:
- class google.cloud.aiplatform_v1.types.BigQuerySource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The BigQuery location for the input content.
- class google.cloud.aiplatform_v1.types.BleuInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for bleu metric.
- metric_spec¶
Required. Spec for bleu score metric.
- instances¶
Required. Repeated bleu instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BleuInstance]
- class google.cloud.aiplatform_v1.types.BleuInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for bleu instance.
- class google.cloud.aiplatform_v1.types.BleuMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Bleu metric value for an instance.
- class google.cloud.aiplatform_v1.types.BleuResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for bleu metric.
- bleu_metric_values¶
Output only. Bleu metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BleuMetricValue]
- class google.cloud.aiplatform_v1.types.BleuSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1.
- class google.cloud.aiplatform_v1.types.Blob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Content blob.
It’s preferred to send as [text][google.cloud.aiplatform.v1.Part.text] directly rather than raw bytes.
- class google.cloud.aiplatform_v1.types.BlurBaselineConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here:
- class google.cloud.aiplatform_v1.types.BoolArray(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of boolean values.
- class google.cloud.aiplatform_v1.types.CancelBatchPredictionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CancelBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CancelBatchPredictionJob].
- class google.cloud.aiplatform_v1.types.CancelCustomJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CancelCustomJob][google.cloud.aiplatform.v1.JobService.CancelCustomJob].
- class google.cloud.aiplatform_v1.types.CancelDataLabelingJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CancelDataLabelingJob][google.cloud.aiplatform.v1.JobService.CancelDataLabelingJob].
- class google.cloud.aiplatform_v1.types.CancelHyperparameterTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CancelHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CancelHyperparameterTuningJob].
- class google.cloud.aiplatform_v1.types.CancelNasJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CancelNasJob][google.cloud.aiplatform.v1.JobService.CancelNasJob].
- class google.cloud.aiplatform_v1.types.CancelPipelineJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.CancelPipelineJob][google.cloud.aiplatform.v1.PipelineService.CancelPipelineJob].
- class google.cloud.aiplatform_v1.types.CancelTrainingPipelineRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.CancelTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CancelTrainingPipeline].
- class google.cloud.aiplatform_v1.types.CancelTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [GenAiTuningService.CancelTuningJob][google.cloud.aiplatform.v1.GenAiTuningService.CancelTuningJob].
- class google.cloud.aiplatform_v1.types.Candidate(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A response candidate generated from the model.
- content¶
Output only. Content parts of the candidate.
- logprobs_result¶
Output only. Log-likelihood scores for the response tokens and top tokens
- finish_reason¶
Output only. The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
- safety_ratings¶
Output only. List of ratings for the safety of a response candidate. There is at most one rating per category.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SafetyRating]
- finish_message¶
Output only. Describes the reason the mode stopped generating tokens in more detail. This is only filled when
finish_reason
is set.This field is a member of oneof
_finish_message
.- Type:
- citation_metadata¶
Output only. Source attribution of the generated content.
- grounding_metadata¶
Output only. Metadata specifies sources used to ground generated content.
- class FinishReason(value)[source]¶
Bases:
Enum
The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
- Values:
- FINISH_REASON_UNSPECIFIED (0):
The finish reason is unspecified.
- STOP (1):
Token generation reached a natural stopping point or a configured stop sequence.
- MAX_TOKENS (2):
Token generation reached the configured maximum output tokens.
- SAFETY (3):
Token generation stopped because the content potentially contains safety violations. NOTE: When streaming, [content][google.cloud.aiplatform.v1.Candidate.content] is empty if content filters blocks the output.
- RECITATION (4):
Token generation stopped because the content potentially contains copyright violations.
- OTHER (5):
All other reasons that stopped the token generation.
- BLOCKLIST (6):
Token generation stopped because the content contains forbidden terms.
- PROHIBITED_CONTENT (7):
Token generation stopped for potentially containing prohibited content.
- SPII (8):
Token generation stopped because the content potentially contains Sensitive Personally Identifiable Information (SPII).
- MALFORMED_FUNCTION_CALL (9):
The function call generated by the model is invalid.
- class google.cloud.aiplatform_v1.types.CheckTrialEarlyStoppingStateMetatdata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
- generic_metadata¶
Operation metadata for suggesting Trials.
- class google.cloud.aiplatform_v1.types.CheckTrialEarlyStoppingStateRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
- class google.cloud.aiplatform_v1.types.CheckTrialEarlyStoppingStateResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
- class google.cloud.aiplatform_v1.types.Citation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Source attributions for content.
- publication_date¶
Output only. Publication date of the attribution.
- Type:
google.type.date_pb2.Date
- class google.cloud.aiplatform_v1.types.CitationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A collection of source attributions for a piece of content.
- citations¶
Output only. List of citations.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Citation]
- class google.cloud.aiplatform_v1.types.ClientConnectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configurations (e.g. inference timeout) that are applied on your endpoints.
- inference_timeout¶
Customizable online prediction request timeout.
- class google.cloud.aiplatform_v1.types.CoherenceInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for coherence metric.
- metric_spec¶
Required. Spec for coherence score metric.
- instance¶
Required. Coherence instance.
- class google.cloud.aiplatform_v1.types.CoherenceInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for coherence instance.
- class google.cloud.aiplatform_v1.types.CoherenceResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for coherence result.
- class google.cloud.aiplatform_v1.types.CoherenceSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for coherence score metric.
- class google.cloud.aiplatform_v1.types.CometInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for Comet metric.
- metric_spec¶
Required. Spec for comet metric.
- instance¶
Required. Comet instance.
- class google.cloud.aiplatform_v1.types.CometInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for Comet instance - The fields used for evaluation are dependent on the comet version.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.CometResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for Comet result - calculates the comet score for the given instance using the version specified in the spec.
- class google.cloud.aiplatform_v1.types.CometSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for Comet metric.
- target_language¶
Optional. Target language in BCP-47 format. Covers both prediction and reference.
- Type:
- class google.cloud.aiplatform_v1.types.CompleteTrialRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.CompleteTrial][google.cloud.aiplatform.v1.VizierService.CompleteTrial].
- name¶
Required. The Trial’s name. Format:
projects/{project}/locations/{location}/studies/{study}/trials/{trial}
- Type:
- final_measurement¶
Optional. If provided, it will be used as the completed Trial’s final_measurement; Otherwise, the service will auto-select a previously reported measurement as the final-measurement
- trial_infeasible¶
Optional. True if the Trial cannot be run with the given Parameter, and final_measurement will be ignored.
- Type:
- class google.cloud.aiplatform_v1.types.CompletionStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.
- successful_count¶
Output only. The number of entities that had been processed successfully.
- Type:
- incomplete_count¶
Output only. In cases when enough errors are encountered a job, pipeline, or operation may be failed as a whole. Below is the number of entities for which the processing had not been finished (either in successful or failed state). Set to -1 if the number is unknown (for example, the operation failed before the total entity number could be collected).
- Type:
- class google.cloud.aiplatform_v1.types.ComputeTokensRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for ComputeTokens RPC call.
- endpoint¶
Required. The name of the Endpoint requested to get lists of tokens and token ids.
- Type:
- instances¶
Optional. The instances that are the input to token computing API call. Schema is identical to the prediction schema of the text model, even for the non-text models, like chat models, or Codey models.
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- model¶
Optional. The name of the publisher model requested to serve the prediction. Format: projects/{project}/locations/{location}/publishers//models/
- Type:
- contents¶
Optional. Input content.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Content]
- class google.cloud.aiplatform_v1.types.ComputeTokensResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for ComputeTokens RPC call.
- tokens_info¶
Lists of tokens info from the input. A ComputeTokensRequest could have multiple instances with a prompt in each instance. We also need to return lists of tokens info for the request with multiple instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TokensInfo]
- class google.cloud.aiplatform_v1.types.ContainerRegistryDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Container Registry location for the container image.
- output_uri¶
Required. Container Registry URI of a container image. Only Google Container Registry and Artifact Registry are supported now. Accepted forms:
Google Container Registry path. For example:
gcr.io/projectId/imageName:tag
.Artifact Registry path. For example:
us-central1-docker.pkg.dev/projectId/repoName/imageName:tag
.
If a tag is not specified, “latest” will be used as the default tag.
- Type:
- class google.cloud.aiplatform_v1.types.ContainerSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The spec of a Container.
- image_uri¶
Required. The URI of a container image in the Container Registry that is to be run on each worker replica.
- Type:
- command¶
The command to be invoked when the container is started. It overrides the entrypoint instruction in Dockerfile when provided.
- Type:
MutableSequence[str]
- env¶
Environment variables to be passed to the container. Maximum limit is 100.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EnvVar]
- class google.cloud.aiplatform_v1.types.Content(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The base structured datatype containing multi-part content of a message.
A
Content
includes arole
field designating the producer of theContent
and aparts
field containing multi-part data that contains the content of the message turn.- role¶
Optional. The producer of the content. Must be either ‘user’ or ‘model’. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
- Type:
- parts¶
Required. Ordered
Parts
that constitute a single message. Parts may have different IANA MIME types.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Part]
- class google.cloud.aiplatform_v1.types.Context(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Instance of a general context.
- display_name¶
User provided display name of the Context. May be up to 128 Unicode characters.
- Type:
- etag¶
An eTag used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Contexts. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Context (System labels are excluded).
- create_time¶
Output only. Timestamp when this Context was created.
- update_time¶
Output only. Timestamp when this Context was last updated.
- parent_contexts¶
Output only. A list of resource names of Contexts that are parents of this Context. A Context may have at most 10 parent_contexts.
- Type:
MutableSequence[str]
- schema_title¶
The title of the schema describing the metadata. Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- schema_version¶
The version of the schema in schema_name to use.
Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- metadata¶
Properties of the Context. Top level metadata keys’ heading and trailing spaces will be trimmed. The size of this field should not exceed 200KB.
- class google.cloud.aiplatform_v1.types.CopyModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel] operation.
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.CopyModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- model_id¶
Optional. Copy source_model into a new Model with this ID. The ID will become the final component of the model resource name.
This value may be up to 63 characters, and valid characters are
[a-z0-9_-]
. The first character cannot be a number or hyphen.This field is a member of oneof
destination_model
.- Type:
- parent_model¶
Optional. Specify this field to copy source_model into this existing Model as a new version. Format:
projects/{project}/locations/{location}/models/{model}
This field is a member of oneof
destination_model
.- Type:
- parent¶
Required. The resource name of the Location into which to copy the Model. Format:
projects/{project}/locations/{location}
- Type:
- source_model¶
Required. The resource name of the Model to copy. That Model must be in the same Project. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- encryption_spec¶
Customer-managed encryption key options. If this is set, then the Model copy will be encrypted with the provided encryption key.
- class google.cloud.aiplatform_v1.types.CopyModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message of [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel] operation.
- model¶
The name of the copied Model resource. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- class google.cloud.aiplatform_v1.types.CountTokensRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.CountTokens][].
- endpoint¶
Required. The name of the Endpoint requested to perform token counting. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- model¶
Optional. The name of the publisher model requested to serve the prediction. Format:
projects/{project}/locations/{location}/publishers/*/models/*
- Type:
- instances¶
Optional. The instances that are the input to token counting call. Schema is identical to the prediction schema of the underlying model.
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- contents¶
Optional. Input content.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Content]
- system_instruction¶
Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
This field is a member of oneof
_system_instruction
.
- tools¶
Optional. A list of
Tools
the model may use to generate the next response.A
Tool
is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tool]
- class google.cloud.aiplatform_v1.types.CountTokensResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.CountTokens][].
- class google.cloud.aiplatform_v1.types.CreateArtifactRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1.MetadataService.CreateArtifact].
- parent¶
Required. The resource name of the MetadataStore where the Artifact should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- artifact¶
Required. The Artifact to create.
- artifact_id¶
The {artifact} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
If not provided, the Artifact’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Artifacts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Artifact.)- Type:
- class google.cloud.aiplatform_v1.types.CreateBatchPredictionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CreateBatchPredictionJob].
- parent¶
Required. The resource name of the Location to create the BatchPredictionJob in. Format:
projects/{project}/locations/{location}
- Type:
- batch_prediction_job¶
Required. The BatchPredictionJob to create.
- class google.cloud.aiplatform_v1.types.CreateContextRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1.MetadataService.CreateContext].
- parent¶
Required. The resource name of the MetadataStore where the Context should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- context¶
Required. The Context to create.
- context_id¶
The {context} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
. If not provided, the Context’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Contexts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Context.)- Type:
- class google.cloud.aiplatform_v1.types.CreateCustomJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateCustomJob][google.cloud.aiplatform.v1.JobService.CreateCustomJob].
- parent¶
Required. The resource name of the Location to create the CustomJob in. Format:
projects/{project}/locations/{location}
- Type:
- custom_job¶
Required. The CustomJob to create.
- class google.cloud.aiplatform_v1.types.CreateDataLabelingJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateDataLabelingJob][google.cloud.aiplatform.v1.JobService.CreateDataLabelingJob].
- parent¶
Required. The parent of the DataLabelingJob. Format:
projects/{project}/locations/{location}
- Type:
- data_labeling_job¶
Required. The DataLabelingJob to create.
- class google.cloud.aiplatform_v1.types.CreateDatasetOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
- parent¶
Required. The resource name of the Location to create the Dataset in. Format:
projects/{project}/locations/{location}
- Type:
- dataset¶
Required. The Dataset to create.
- class google.cloud.aiplatform_v1.types.CreateDatasetVersionOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.CreateDatasetVersion].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.CreateDatasetVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.CreateDatasetVersion].
- parent¶
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- dataset_version¶
Required. The version to be created. The same CMEK policies with the original Dataset will be applied the dataset version. So here we don’t need to specify the EncryptionSpecType here.
- class google.cloud.aiplatform_v1.types.CreateDeploymentResourcePoolOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for CreateDeploymentResourcePool method.
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateDeploymentResourcePoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for CreateDeploymentResourcePool method.
- parent¶
Required. The parent location resource where this DeploymentResourcePool will be created. Format:
projects/{project}/locations/{location}
- Type:
- deployment_resource_pool¶
Required. The DeploymentResourcePool to create.
- class google.cloud.aiplatform_v1.types.CreateEndpointOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
- parent¶
Required. The resource name of the Location to create the Endpoint in. Format:
projects/{project}/locations/{location}
- Type:
- endpoint¶
Required. The Endpoint to create.
- endpoint_id¶
Immutable. The ID to use for endpoint, which will become the final component of the endpoint resource name. If not provided, Vertex AI will generate a value for this ID.
If the first character is a letter, this value may be up to 63 characters, and valid characters are
[a-z0-9-]
. The last character must be a letter or number.If the first character is a number, this value may be up to 9 characters, and valid characters are
[0-9]
with no leading zeros.When using HTTP/JSON, this field is populated based on a query string argument, such as
?endpoint_id=12345
. This is the fallback for fields that are not included in either the URI or the body.- Type:
- class google.cloud.aiplatform_v1.types.CreateEntityTypeOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create EntityType.
- generic_metadata¶
Operation metadata for EntityType.
- class google.cloud.aiplatform_v1.types.CreateEntityTypeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.CreateEntityType][google.cloud.aiplatform.v1.FeaturestoreService.CreateEntityType].
- parent¶
Required. The resource name of the Featurestore to create EntityTypes. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
- Type:
- entity_type¶
The EntityType to create.
- entity_type_id¶
Required. The ID to use for the EntityType, which will become the final component of the EntityType’s resource name.
This value may be up to 60 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within a featurestore.
- Type:
- class google.cloud.aiplatform_v1.types.CreateExecutionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1.MetadataService.CreateExecution].
- parent¶
Required. The resource name of the MetadataStore where the Execution should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- execution¶
Required. The Execution to create.
- execution_id¶
The {execution} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
If not provided, the Execution’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Executions in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Execution.)- Type:
- class google.cloud.aiplatform_v1.types.CreateFeatureGroupOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create FeatureGroup.
- generic_metadata¶
Operation metadata for FeatureGroup.
- class google.cloud.aiplatform_v1.types.CreateFeatureGroupRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureRegistryService.CreateFeatureGroup][google.cloud.aiplatform.v1.FeatureRegistryService.CreateFeatureGroup].
- parent¶
Required. The resource name of the Location to create FeatureGroups. Format:
projects/{project}/locations/{location}
- Type:
- feature_group¶
Required. The FeatureGroup to create.
- feature_group_id¶
Required. The ID to use for this FeatureGroup, which will become the final component of the FeatureGroup’s resource name.
This value may be up to 128 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within the project and location.
- Type:
- class google.cloud.aiplatform_v1.types.CreateFeatureOnlineStoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create FeatureOnlineStore.
- generic_metadata¶
Operation metadata for FeatureOnlineStore.
- class google.cloud.aiplatform_v1.types.CreateFeatureOnlineStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.CreateFeatureOnlineStore][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.CreateFeatureOnlineStore].
- parent¶
Required. The resource name of the Location to create FeatureOnlineStores. Format:
projects/{project}/locations/{location}
- Type:
- feature_online_store¶
Required. The FeatureOnlineStore to create.
- feature_online_store_id¶
Required. The ID to use for this FeatureOnlineStore, which will become the final component of the FeatureOnlineStore’s resource name.
This value may be up to 60 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within the project and location.
- Type:
- class google.cloud.aiplatform_v1.types.CreateFeatureOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create Feature.
- generic_metadata¶
Operation metadata for Feature.
- class google.cloud.aiplatform_v1.types.CreateFeatureRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.CreateFeature][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeature]. Request message for [FeatureRegistryService.CreateFeature][google.cloud.aiplatform.v1.FeatureRegistryService.CreateFeature].
- parent¶
Required. The resource name of the EntityType or FeatureGroup to create a Feature. Format for entity_type as parent:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
Format for feature_group as parent:projects/{project}/locations/{location}/featureGroups/{feature_group}
- Type:
- feature¶
Required. The Feature to create.
- feature_id¶
Required. The ID to use for the Feature, which will become the final component of the Feature’s resource name.
This value may be up to 128 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within an EntityType/FeatureGroup.
- Type:
- class google.cloud.aiplatform_v1.types.CreateFeatureViewOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create FeatureView.
- generic_metadata¶
Operation metadata for FeatureView Create.
- class google.cloud.aiplatform_v1.types.CreateFeatureViewRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.CreateFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.CreateFeatureView].
- parent¶
Required. The resource name of the FeatureOnlineStore to create FeatureViews. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}
- Type:
- feature_view¶
Required. The FeatureView to create.
- feature_view_id¶
Required. The ID to use for the FeatureView, which will become the final component of the FeatureView’s resource name.
This value may be up to 60 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within a FeatureOnlineStore.
- Type:
- class google.cloud.aiplatform_v1.types.CreateFeaturestoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create Featurestore.
- generic_metadata¶
Operation metadata for Featurestore.
- class google.cloud.aiplatform_v1.types.CreateFeaturestoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.CreateFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeaturestore].
- parent¶
Required. The resource name of the Location to create Featurestores. Format:
projects/{project}/locations/{location}
- Type:
- featurestore¶
Required. The Featurestore to create.
- featurestore_id¶
Required. The ID to use for this Featurestore, which will become the final component of the Featurestore’s resource name.
This value may be up to 60 characters, and valid characters are
[a-z0-9_]
. The first character cannot be a number.The value must be unique within the project and location.
- Type:
- class google.cloud.aiplatform_v1.types.CreateHyperparameterTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CreateHyperparameterTuningJob].
- parent¶
Required. The resource name of the Location to create the HyperparameterTuningJob in. Format:
projects/{project}/locations/{location}
- Type:
- hyperparameter_tuning_job¶
Required. The HyperparameterTuningJob to create.
- class google.cloud.aiplatform_v1.types.CreateIndexEndpointOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateIndexEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
- parent¶
Required. The resource name of the Location to create the IndexEndpoint in. Format:
projects/{project}/locations/{location}
- Type:
- index_endpoint¶
Required. The IndexEndpoint to create.
- class google.cloud.aiplatform_v1.types.CreateIndexOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
- generic_metadata¶
The operation generic information.
- nearest_neighbor_search_operation_metadata¶
The operation metadata with regard to Matching Engine Index operation.
- class google.cloud.aiplatform_v1.types.CreateIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
- parent¶
Required. The resource name of the Location to create the Index in. Format:
projects/{project}/locations/{location}
- Type:
- index¶
Required. The Index to create.
- class google.cloud.aiplatform_v1.types.CreateMetadataSchemaRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1.MetadataService.CreateMetadataSchema].
- parent¶
Required. The resource name of the MetadataStore where the MetadataSchema should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- metadata_schema¶
Required. The MetadataSchema to create.
- metadata_schema_id¶
The {metadata_schema} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/metadataSchemas/{metadataschema}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataSchemas in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataSchema.)- Type:
- class google.cloud.aiplatform_v1.types.CreateMetadataStoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
- generic_metadata¶
Operation metadata for creating a MetadataStore.
- class google.cloud.aiplatform_v1.types.CreateMetadataStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
- parent¶
Required. The resource name of the Location where the MetadataStore should be created. Format:
projects/{project}/locations/{location}/
- Type:
- metadata_store¶
Required. The MetadataStore to create.
- metadata_store_id¶
The {metadatastore} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataStores in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataStore.)- Type:
- class google.cloud.aiplatform_v1.types.CreateModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.CreateModelDeploymentMonitoringJob].
- parent¶
Required. The parent of the ModelDeploymentMonitoringJob. Format:
projects/{project}/locations/{location}
- Type:
- model_deployment_monitoring_job¶
Required. The ModelDeploymentMonitoringJob to create
- class google.cloud.aiplatform_v1.types.CreateNasJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.CreateNasJob][google.cloud.aiplatform.v1.JobService.CreateNasJob].
- parent¶
Required. The resource name of the Location to create the NasJob in. Format:
projects/{project}/locations/{location}
- Type:
- nas_job¶
Required. The NasJob to create.
- class google.cloud.aiplatform_v1.types.CreateNotebookExecutionJobOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.CreateNotebookExecutionJob][google.cloud.aiplatform.v1.NotebookService.CreateNotebookExecutionJob].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateNotebookExecutionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.CreateNotebookExecutionJob]
- parent¶
Required. The resource name of the Location to create the NotebookExecutionJob. Format:
projects/{project}/locations/{location}
- Type:
- notebook_execution_job¶
Required. The NotebookExecutionJob to create.
- class google.cloud.aiplatform_v1.types.CreateNotebookRuntimeTemplateOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1.NotebookService.CreateNotebookRuntimeTemplate].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateNotebookRuntimeTemplateRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1.NotebookService.CreateNotebookRuntimeTemplate].
- parent¶
Required. The resource name of the Location to create the NotebookRuntimeTemplate. Format:
projects/{project}/locations/{location}
- Type:
- notebook_runtime_template¶
Required. The NotebookRuntimeTemplate to create.
- class google.cloud.aiplatform_v1.types.CreatePersistentResourceOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create PersistentResource.
- generic_metadata¶
Operation metadata for PersistentResource.
- class google.cloud.aiplatform_v1.types.CreatePersistentResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PersistentResourceService.CreatePersistentResource][google.cloud.aiplatform.v1.PersistentResourceService.CreatePersistentResource].
- parent¶
Required. The resource name of the Location to create the PersistentResource in. Format:
projects/{project}/locations/{location}
- Type:
- persistent_resource¶
Required. The PersistentResource to create.
- class google.cloud.aiplatform_v1.types.CreatePipelineJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1.PipelineService.CreatePipelineJob].
- parent¶
Required. The resource name of the Location to create the PipelineJob in. Format:
projects/{project}/locations/{location}
- Type:
- pipeline_job¶
Required. The PipelineJob to create.
- class google.cloud.aiplatform_v1.types.CreateRegistryFeatureOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create FeatureGroup.
- generic_metadata¶
Operation metadata for Feature.
- class google.cloud.aiplatform_v1.types.CreateScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.CreateSchedule][google.cloud.aiplatform.v1.ScheduleService.CreateSchedule].
- parent¶
Required. The resource name of the Location to create the Schedule in. Format:
projects/{project}/locations/{location}
- Type:
- schedule¶
Required. The Schedule to create.
- class google.cloud.aiplatform_v1.types.CreateSpecialistPoolOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.CreateSpecialistPoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
- parent¶
Required. The parent Project name for the new SpecialistPool. The form is
projects/{project}/locations/{location}
.- Type:
- specialist_pool¶
Required. The SpecialistPool to create.
- class google.cloud.aiplatform_v1.types.CreateStudyRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.CreateStudy][google.cloud.aiplatform.v1.VizierService.CreateStudy].
- parent¶
Required. The resource name of the Location to create the CustomJob in. Format:
projects/{project}/locations/{location}
- Type:
- study¶
Required. The Study configuration used to create the Study.
- class google.cloud.aiplatform_v1.types.CreateTensorboardExperimentRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardExperiment].
- parent¶
Required. The resource name of the Tensorboard to create the TensorboardExperiment in. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
- Type:
- tensorboard_experiment¶
The TensorboardExperiment to create.
- class google.cloud.aiplatform_v1.types.CreateTensorboardOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform create Tensorboard.
- generic_metadata¶
Operation metadata for Tensorboard.
- class google.cloud.aiplatform_v1.types.CreateTensorboardRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboard].
- parent¶
Required. The resource name of the Location to create the Tensorboard in. Format:
projects/{project}/locations/{location}
- Type:
- tensorboard¶
Required. The Tensorboard to create.
- class google.cloud.aiplatform_v1.types.CreateTensorboardRunRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardRun].
- parent¶
Required. The resource name of the TensorboardExperiment to create the TensorboardRun in. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
- Type:
- tensorboard_run¶
Required. The TensorboardRun to create.
- class google.cloud.aiplatform_v1.types.CreateTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardTimeSeries].
- parent¶
Required. The resource name of the TensorboardRun to create the TensorboardTimeSeries in. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}
- Type:
- tensorboard_time_series_id¶
Optional. The user specified unique ID to use for the TensorboardTimeSeries, which becomes the final component of the TensorboardTimeSeries’s resource name. This value should match “[a-z0-9][a-z0-9-]{0, 127}”.
- Type:
- tensorboard_time_series¶
Required. The TensorboardTimeSeries to create.
- class google.cloud.aiplatform_v1.types.CreateTrainingPipelineRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.CreateTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CreateTrainingPipeline].
- parent¶
Required. The resource name of the Location to create the TrainingPipeline in. Format:
projects/{project}/locations/{location}
- Type:
- training_pipeline¶
Required. The TrainingPipeline to create.
- class google.cloud.aiplatform_v1.types.CreateTrialRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.CreateTrial][google.cloud.aiplatform.v1.VizierService.CreateTrial].
- parent¶
Required. The resource name of the Study to create the Trial in. Format:
projects/{project}/locations/{location}/studies/{study}
- Type:
- trial¶
Required. The Trial to create.
- class google.cloud.aiplatform_v1.types.CreateTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [GenAiTuningService.CreateTuningJob][google.cloud.aiplatform.v1.GenAiTuningService.CreateTuningJob].
- parent¶
Required. The resource name of the Location to create the TuningJob in. Format:
projects/{project}/locations/{location}
- Type:
- tuning_job¶
Required. The TuningJob to create.
- class google.cloud.aiplatform_v1.types.CsvDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The storage details for CSV output content.
- gcs_destination¶
Required. Google Cloud Storage location.
- class google.cloud.aiplatform_v1.types.CsvSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The storage details for CSV input content.
- gcs_source¶
Required. Google Cloud Storage location.
- class google.cloud.aiplatform_v1.types.CustomJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).
- display_name¶
Required. The display name of the CustomJob. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- job_spec¶
Required. Job spec.
- state¶
Output only. The detailed state of the job.
- create_time¶
Output only. Time when the CustomJob was created.
- start_time¶
Output only. Time when the CustomJob for the first time entered the
JOB_STATE_RUNNING
state.
- end_time¶
Output only. Time when the CustomJob entered any of the following states:
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
,JOB_STATE_CANCELLED
.
- update_time¶
Output only. Time when the CustomJob was most recently updated.
- error¶
Output only. Only populated when job’s state is
JOB_STATE_FAILED
orJOB_STATE_CANCELLED
.- Type:
google.rpc.status_pb2.Status
- labels¶
The labels with user-defined metadata to organize CustomJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- encryption_spec¶
Customer-managed encryption key options for a CustomJob. If this is set, then all resources created by the CustomJob will be encrypted with the provided encryption key.
- web_access_uris¶
Output only. URIs for accessing interactive shells (one URI for each training node). Only available if [job_spec.enable_web_access][google.cloud.aiplatform.v1.CustomJobSpec.enable_web_access] is
true
.The keys are names of each node in the training job; for example,
workerpool0-0
for the primary node,workerpool1-0
for the first node in the second worker pool, andworkerpool1-1
for the second node in the second worker pool.The values are the URIs for each node’s interactive shell.
- class google.cloud.aiplatform_v1.types.CustomJobSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of a CustomJob.
- persistent_resource_id¶
Optional. The ID of the PersistentResource in the same Project and Location which to run
If this is specified, the job will be run on existing machines held by the PersistentResource instead of on-demand short-live machines. The network and CMEK configs on the job should be consistent with those on the PersistentResource, otherwise, the job will be rejected.
- Type:
- worker_pool_specs¶
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.WorkerPoolSpec]
- scheduling¶
Scheduling options for a CustomJob.
- service_account¶
Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent for the CustomJob’s project is used.
- Type:
- network¶
Optional. The full name of the Compute Engine network to which the Job should be peered. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the job is not peered with any network.
- Type:
- reserved_ip_ranges¶
Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job.
If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network.
Example: [‘vertex-ai-ip-range’].
- Type:
MutableSequence[str]
- base_output_directory¶
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name [id][google.cloud.aiplatform.v1.Trial.id] under its parent HyperparameterTuningJob’s baseOutputDirectory.
The following Vertex AI environment variables will be passed to containers or python modules when this field is set:
For CustomJob:
AIP_MODEL_DIR =
<base_output_directory>/model/
AIP_CHECKPOINT_DIR =
<base_output_directory>/checkpoints/
AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/logs/
For CustomJob backing a Trial of HyperparameterTuningJob:
AIP_MODEL_DIR =
<base_output_directory>/<trial_id>/model/
AIP_CHECKPOINT_DIR =
<base_output_directory>/<trial_id>/checkpoints/
AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/<trial_id>/logs/
- protected_artifact_location_id¶
The ID of the location to store protected artifacts. e.g. us-central1. Populate only when the location is different than CustomJob location. List of supported locations:
https://cloud.google.com/vertex-ai/docs/general/locations
- Type:
- tensorboard¶
Optional. The name of a Vertex AI [Tensorboard][google.cloud.aiplatform.v1.Tensorboard] resource to which this CustomJob will upload Tensorboard logs. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
- Type:
- enable_web_access¶
Optional. Whether you want Vertex AI to enable interactive shell access to training containers.
If set to
true
, you can access interactive shells at the URIs given by [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris] or [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris] (within [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).- Type:
- enable_dashboard_access¶
Optional. Whether you want Vertex AI to enable access to the customized dashboard in training chief container.
If set to
true
, you can access the dashboard at the URIs given by [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris] or [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris] (within [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).- Type:
- experiment¶
Optional. The Experiment associated with this job. Format:
projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}
- Type:
- experiment_run¶
Optional. The Experiment Run associated with this job. Format:
projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}-{experiment-run-name}
- Type:
- models¶
Optional. The name of the Model resources for which to generate a mapping to artifact URIs. Applicable only to some of the Google-provided custom jobs. Format:
projects/{project}/locations/{location}/models/{model}
In order to retrieve a specific version of the model, also provide the version ID or version alias. Example:
projects/{project}/locations/{location}/models/{model}@2
orprojects/{project}/locations/{location}/models/{model}@golden
If no version ID or alias is specified, the “default” version will be returned. The “default” version alias is created for the first version of the model, and can be moved to other versions later on. There will be exactly one default version.- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.DataItem(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A piece of data in a Dataset. Could be an image, a video, a document or plain text.
- create_time¶
Output only. Timestamp when this DataItem was created.
- update_time¶
Output only. Timestamp when this DataItem was last updated.
- labels¶
Optional. The labels with user-defined metadata to organize your DataItems. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one DataItem(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- payload¶
Required. The data that the DataItem represents (for example, an image or a text snippet). The schema of the payload is stored in the parent Dataset’s [metadata schema’s][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri] dataItemSchemaUri field.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- class google.cloud.aiplatform_v1.types.DataItemView(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A container for a single DataItem and Annotations on it.
- data_item¶
The DataItem.
- annotations¶
The Annotations on the DataItem. If too many Annotations should be returned for the DataItem, this field will be truncated per annotations_limit in request. If it was, then the has_truncated_annotations will be set to true.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Annotation]
- has_truncated_annotations¶
True if and only if the Annotations field has been truncated. It happens if more Annotations for this DataItem met the request’s annotation_filter than are allowed to be returned by annotations_limit. Note that if Annotations field is not being returned due to field mask, then this field will not be set to true no matter how many Annotations are there.
- Type:
- class google.cloud.aiplatform_v1.types.DataLabelingJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
- display_name¶
Required. The user-defined name of the DataLabelingJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a DataLabelingJob.
- Type:
- datasets¶
Required. Dataset resource names. Right now we only support labeling from a single Dataset. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
MutableSequence[str]
- annotation_labels¶
Labels to assign to annotations generated by this DataLabelingJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- instruction_uri¶
Required. The Google Cloud Storage location of the instruction pdf. This pdf is shared with labelers, and provides detailed description on how to label DataItems in Datasets.
- Type:
- inputs_schema_uri¶
Required. Points to a YAML file stored on Google Cloud Storage describing the config for a specific type of DataLabelingJob. The schema files that can be used here are found in the https://storage.googleapis.com/google-cloud-aiplatform bucket in the /schema/datalabelingjob/inputs/ folder.
- Type:
- inputs¶
Required. Input config parameters for the DataLabelingJob.
- state¶
Output only. The detailed state of the job.
- labeling_progress¶
Output only. Current labeling job progress percentage scaled in interval [0, 100], indicating the percentage of DataItems that has been finished.
- Type:
- current_spend¶
Output only. Estimated cost(in US dollars) that the DataLabelingJob has incurred to date.
- Type:
google.type.money_pb2.Money
- create_time¶
Output only. Timestamp when this DataLabelingJob was created.
- update_time¶
Output only. Timestamp when this DataLabelingJob was updated most recently.
- error¶
Output only. DataLabelingJob errors. It is only populated when job’s state is
JOB_STATE_FAILED
orJOB_STATE_CANCELLED
.- Type:
google.rpc.status_pb2.Status
- labels¶
The labels with user-defined metadata to organize your DataLabelingJobs.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each DataLabelingJob:
“aiplatform.googleapis.com/schema”: output only, its value is the [inputs_schema][google.cloud.aiplatform.v1.DataLabelingJob.inputs_schema_uri]’s title.
- specialist_pools¶
The SpecialistPools’ resource names associated with this job.
- Type:
MutableSequence[str]
- encryption_spec¶
Customer-managed encryption key spec for a DataLabelingJob. If set, this DataLabelingJob will be secured by this key.
Note: Annotations created in the DataLabelingJob are associated with the EncryptionSpec of the Dataset they are exported to.
- active_learning_config¶
Parameters that configure the active learning pipeline. Active learning will label the data incrementally via several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
- class google.cloud.aiplatform_v1.types.Dataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A collection of DataItems and Annotations on them.
- display_name¶
Required. The user-defined name of the Dataset. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- metadata_schema_uri¶
Required. Points to a YAML file stored on Google Cloud Storage describing additional information about the Dataset. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/metadata/.
- Type:
- metadata¶
Required. Additional information about the Dataset.
- data_item_count¶
Output only. The number of DataItems in this Dataset. Only apply for non-structured Dataset.
- Type:
- create_time¶
Output only. Timestamp when this Dataset was created.
- update_time¶
Output only. Timestamp when this Dataset was last updated.
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Datasets.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Dataset (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each Dataset:
“aiplatform.googleapis.com/dataset_metadata_schema”: output only, its value is the [metadata_schema’s][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri] title.
- saved_queries¶
All SavedQueries belong to the Dataset will be returned in List/Get Dataset response. The annotation_specs field will not be populated except for UI cases which will only use [annotation_spec_count][google.cloud.aiplatform.v1.SavedQuery.annotation_spec_count]. In CreateDataset request, a SavedQuery is created together if this field is set, up to one SavedQuery can be set in CreateDatasetRequest. The SavedQuery should not contain any AnnotationSpec.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SavedQuery]
- encryption_spec¶
Customer-managed encryption key spec for a Dataset. If set, this Dataset and all sub-resources of this Dataset will be secured by this key.
- metadata_artifact¶
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Dataset. The Artifact resource name pattern is
projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}
.- Type:
- model_reference¶
Optional. Reference to the public base model last used by the dataset. Only set for prompt datasets.
- Type:
- class google.cloud.aiplatform_v1.types.DatasetVersion(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes the dataset version.
- create_time¶
Output only. Timestamp when this DatasetVersion was created.
- update_time¶
Output only. Timestamp when this DatasetVersion was last updated.
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- display_name¶
The user-defined name of the DatasetVersion. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- metadata¶
Required. Output only. Additional information about the DatasetVersion.
- model_reference¶
Output only. Reference to the public base model last used by the dataset version. Only set for prompt dataset versions.
- Type:
- class google.cloud.aiplatform_v1.types.DedicatedResources(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.
- machine_spec¶
Required. Immutable. The specification of a single machine used by the prediction.
- min_replica_count¶
Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1.
If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
- Type:
- max_replica_count¶
Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use [min_replica_count][google.cloud.aiplatform.v1.DedicatedResources.min_replica_count] as the default value.
The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
- Type:
- autoscaling_metric_specs¶
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator’s duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric.
If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator’s duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics.
If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set.
For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to
aiplatform.googleapis.com/prediction/online/cpu/utilization
and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to80
.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.AutoscalingMetricSpec]
- class google.cloud.aiplatform_v1.types.DeleteArtifactRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1.MetadataService.DeleteArtifact].
- name¶
Required. The resource name of the Artifact to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteBatchPredictionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteBatchPredictionJob][google.cloud.aiplatform.v1.JobService.DeleteBatchPredictionJob].
- class google.cloud.aiplatform_v1.types.DeleteContextRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1.MetadataService.DeleteContext].
- name¶
Required. The resource name of the Context to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteCustomJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteCustomJob][google.cloud.aiplatform.v1.JobService.DeleteCustomJob].
- class google.cloud.aiplatform_v1.types.DeleteDataLabelingJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteDataLabelingJob][google.cloud.aiplatform.v1.JobService.DeleteDataLabelingJob].
- class google.cloud.aiplatform_v1.types.DeleteDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1.DatasetService.DeleteDataset].
- class google.cloud.aiplatform_v1.types.DeleteDatasetVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.DeleteDatasetVersion][google.cloud.aiplatform.v1.DatasetService.DeleteDatasetVersion].
- class google.cloud.aiplatform_v1.types.DeleteDeploymentResourcePoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for DeleteDeploymentResourcePool method.
- class google.cloud.aiplatform_v1.types.DeleteEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1.EndpointService.DeleteEndpoint].
- class google.cloud.aiplatform_v1.types.DeleteEntityTypeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.DeleteEntityType][google.cloud.aiplatform.v1.FeaturestoreService.DeleteEntityType].
- name¶
Required. The name of the EntityType to be deleted. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteExecutionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1.MetadataService.DeleteExecution].
- name¶
Required. The resource name of the Execution to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteFeatureGroupRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureRegistryService.DeleteFeatureGroup][google.cloud.aiplatform.v1.FeatureRegistryService.DeleteFeatureGroup].
- name¶
Required. The name of the FeatureGroup to be deleted. Format:
projects/{project}/locations/{location}/featureGroups/{feature_group}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteFeatureOnlineStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore].
- name¶
Required. The name of the FeatureOnlineStore to be deleted. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteFeatureRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.DeleteFeature][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeature]. Request message for [FeatureRegistryService.DeleteFeature][google.cloud.aiplatform.v1.FeatureRegistryService.DeleteFeature].
- class google.cloud.aiplatform_v1.types.DeleteFeatureValuesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that delete Feature values.
- generic_metadata¶
Operation metadata for Featurestore delete Features values.
- class google.cloud.aiplatform_v1.types.DeleteFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeatureValues].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- select_entity¶
Select feature values to be deleted by specifying entities.
This field is a member of oneof
DeleteOption
.
- select_time_range_and_feature¶
Select feature values to be deleted by specifying time range and features.
This field is a member of oneof
DeleteOption
.
- entity_type¶
Required. The resource name of the EntityType grouping the Features for which values are being deleted from. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType}
- Type:
- class SelectEntity(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.
- entity_id_selector¶
Required. Selectors choosing feature values of which entity id to be deleted from the EntityType.
- class SelectTimeRangeAndFeature(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.
- time_range¶
Required. Select feature generated within a half-inclusive time range. The time range is lower inclusive and upper exclusive.
- Type:
google.type.interval_pb2.Interval
- feature_selector¶
Required. Selectors choosing which feature values to be deleted from the EntityType.
- class google.cloud.aiplatform_v1.types.DeleteFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeatureValues].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- select_entity¶
Response for request specifying the entities to delete
This field is a member of oneof
response
.
- select_time_range_and_feature¶
Response for request specifying time range and feature
This field is a member of oneof
response
.
- class SelectEntity(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message if the request uses the SelectEntity option.
- offline_storage_deleted_entity_row_count¶
The count of deleted entity rows in the offline storage. Each row corresponds to the combination of an entity ID and a timestamp. One entity ID can have multiple rows in the offline storage.
- Type:
- class SelectTimeRangeAndFeature(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message if the request uses the SelectTimeRangeAndFeature option.
- impacted_feature_count¶
The count of the features or columns impacted. This is the same as the feature count in the request.
- Type:
- offline_storage_modified_entity_row_count¶
The count of modified entity rows in the offline storage. Each row corresponds to the combination of an entity ID and a timestamp. One entity ID can have multiple rows in the offline storage. Within each row, only the features specified in the request are deleted.
- Type:
- class google.cloud.aiplatform_v1.types.DeleteFeatureViewRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.DeleteFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.DeleteFeatureView].
- class google.cloud.aiplatform_v1.types.DeleteFeaturestoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.DeleteFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeaturestore].
- name¶
Required. The name of the Featurestore to be deleted. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteHyperparameterTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.DeleteHyperparameterTuningJob].
- class google.cloud.aiplatform_v1.types.DeleteIndexEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.DeleteIndexEndpoint].
- class google.cloud.aiplatform_v1.types.DeleteIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.DeleteIndex][google.cloud.aiplatform.v1.IndexService.DeleteIndex].
- class google.cloud.aiplatform_v1.types.DeleteMetadataStoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
- generic_metadata¶
Operation metadata for deleting a MetadataStore.
- class google.cloud.aiplatform_v1.types.DeleteMetadataStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
- name¶
Required. The resource name of the MetadataStore to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.DeleteModelDeploymentMonitoringJob].
- class google.cloud.aiplatform_v1.types.DeleteModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.DeleteModel][google.cloud.aiplatform.v1.ModelService.DeleteModel].
- class google.cloud.aiplatform_v1.types.DeleteModelVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.DeleteModelVersion][google.cloud.aiplatform.v1.ModelService.DeleteModelVersion].
- class google.cloud.aiplatform_v1.types.DeleteNasJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.DeleteNasJob][google.cloud.aiplatform.v1.JobService.DeleteNasJob].
- class google.cloud.aiplatform_v1.types.DeleteNotebookExecutionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.DeleteNotebookExecutionJob]
- class google.cloud.aiplatform_v1.types.DeleteNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.DeleteNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.DeleteNotebookRuntime].
- class google.cloud.aiplatform_v1.types.DeleteNotebookRuntimeTemplateRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.DeleteNotebookRuntimeTemplate][google.cloud.aiplatform.v1.NotebookService.DeleteNotebookRuntimeTemplate].
- class google.cloud.aiplatform_v1.types.DeleteOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform deletes of any entities.
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.DeletePersistentResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PersistentResourceService.DeletePersistentResource][google.cloud.aiplatform.v1.PersistentResourceService.DeletePersistentResource].
- class google.cloud.aiplatform_v1.types.DeletePipelineJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.DeletePipelineJob][google.cloud.aiplatform.v1.PipelineService.DeletePipelineJob].
- class google.cloud.aiplatform_v1.types.DeleteSavedQueryRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.DeleteSavedQuery][google.cloud.aiplatform.v1.DatasetService.DeleteSavedQuery].
- class google.cloud.aiplatform_v1.types.DeleteScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.DeleteSchedule][google.cloud.aiplatform.v1.ScheduleService.DeleteSchedule].
- class google.cloud.aiplatform_v1.types.DeleteSpecialistPoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [SpecialistPoolService.DeleteSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.DeleteSpecialistPool].
- name¶
Required. The resource name of the SpecialistPool to delete. Format:
projects/{project}/locations/{location}/specialistPools/{specialist_pool}
- Type:
- class google.cloud.aiplatform_v1.types.DeleteStudyRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.DeleteStudy][google.cloud.aiplatform.v1.VizierService.DeleteStudy].
- class google.cloud.aiplatform_v1.types.DeleteTensorboardExperimentRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardExperiment].
- class google.cloud.aiplatform_v1.types.DeleteTensorboardRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboard].
- class google.cloud.aiplatform_v1.types.DeleteTensorboardRunRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardRun].
- class google.cloud.aiplatform_v1.types.DeleteTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardTimeSeries].
- class google.cloud.aiplatform_v1.types.DeleteTrainingPipelineRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.DeleteTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.DeleteTrainingPipeline].
- class google.cloud.aiplatform_v1.types.DeleteTrialRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.DeleteTrial][google.cloud.aiplatform.v1.VizierService.DeleteTrial].
- class google.cloud.aiplatform_v1.types.DeployIndexOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.DeployIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
- index_endpoint¶
Required. The name of the IndexEndpoint resource into which to deploy an Index. Format:
projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}
- Type:
- deployed_index¶
Required. The DeployedIndex to be created within the IndexEndpoint.
- class google.cloud.aiplatform_v1.types.DeployIndexResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
- deployed_index¶
The DeployedIndex that had been deployed in the IndexEndpoint.
- class google.cloud.aiplatform_v1.types.DeployModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.DeployModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
- endpoint¶
Required. The name of the Endpoint resource into which to deploy a Model. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- deployed_model¶
Required. The DeployedModel to be created within the Endpoint. Note that [Endpoint.traffic_split][google.cloud.aiplatform.v1.Endpoint.traffic_split] must be updated for the DeployedModel to start receiving traffic, either as part of this call, or via [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1.EndpointService.UpdateEndpoint].
- traffic_split¶
A map from a DeployedModel’s ID to the percentage of this Endpoint’s traffic that should be forwarded to that DeployedModel.
If this field is non-empty, then the Endpoint’s [traffic_split][google.cloud.aiplatform.v1.Endpoint.traffic_split] will be overwritten with it. To refer to the ID of the just being deployed Model, a “0” should be used, and the actual ID of the new DeployedModel will be filled in its place by this method. The traffic percentage values must add up to 100.
If this field is empty, then the Endpoint’s [traffic_split][google.cloud.aiplatform.v1.Endpoint.traffic_split] is not updated.
- class google.cloud.aiplatform_v1.types.DeployModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
- deployed_model¶
The DeployedModel that had been deployed in the Endpoint.
- class google.cloud.aiplatform_v1.types.DeployedIndex(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
- id¶
Required. The user specified ID of the DeployedIndex. The ID can be up to 128 characters long and must start with a letter and only contain letters, numbers, and underscores. The ID must be unique within the project it is created in.
- Type:
- index¶
Required. The name of the Index this is the deployment of. We may refer to this Index as the DeployedIndex’s “original” Index.
- Type:
- display_name¶
The display name of the DeployedIndex. If not provided upon creation, the Index’s display_name is used.
- Type:
- create_time¶
Output only. Timestamp when the DeployedIndex was created.
- private_endpoints¶
Output only. Provides paths for users to send requests directly to the deployed index services running on Cloud via private services access. This field is populated if [network][google.cloud.aiplatform.v1.IndexEndpoint.network] is configured.
- index_sync_time¶
Output only. The DeployedIndex may depend on various data on its original Index. Additionally when certain changes to the original Index are being done (e.g. when what the Index contains is being changed) the DeployedIndex may be asynchronously updated in the background to reflect these changes. If this timestamp’s value is at least the [Index.update_time][google.cloud.aiplatform.v1.Index.update_time] of the original Index, it means that this DeployedIndex and the original Index are in sync. If this timestamp is older, then to see which updates this DeployedIndex already contains (and which it does not), one must [list][google.longrunning.Operations.ListOperations] the operations that are running on the original Index. Only the successfully completed Operations with [update_time][google.cloud.aiplatform.v1.GenericOperationMetadata.update_time] equal or before this sync time are contained in this DeployedIndex.
- automatic_resources¶
Optional. A description of resources that the DeployedIndex uses, which to large degree are decided by Vertex AI, and optionally allows only a modest additional configuration. If min_replica_count is not set, the default value is 2 (we don’t provide SLA when min_replica_count=1). If max_replica_count is not set, the default value is min_replica_count. The max allowed replica count is 1000.
- dedicated_resources¶
Optional. A description of resources that are dedicated to the DeployedIndex, and that need a higher degree of manual configuration. The field min_replica_count must be set to a value strictly greater than 0, or else validation will fail. We don’t provide SLA when min_replica_count=1. If max_replica_count is not set, the default value is min_replica_count. The max allowed replica count is 1000.
Available machine types for SMALL shard: e2-standard-2 and all machine types available for MEDIUM and LARGE shard.
Available machine types for MEDIUM shard: e2-standard-16 and all machine types available for LARGE shard.
Available machine types for LARGE shard: e2-highmem-16, n2d-standard-32.
n1-standard-16 and n1-standard-32 are still available, but we recommend e2-standard-16 and e2-highmem-16 for cost efficiency.
- enable_access_logging¶
Optional. If true, private endpoint’s access logs are sent to Cloud Logging.
These logs are like standard server access logs, containing information like timestamp and latency for each MatchRequest.
Note that logs may incur a cost, especially if the deployed index receives a high queries per second rate (QPS). Estimate your costs before enabling this option.
- Type:
- deployed_index_auth_config¶
Optional. If set, the authentication is enabled for the private endpoint.
- reserved_ip_ranges¶
Optional. A list of reserved ip ranges under the VPC network that can be used for this DeployedIndex.
If set, we will deploy the index within the provided ip ranges. Otherwise, the index might be deployed to any ip ranges under the provided VPC network.
The value should be the name of the address (https://cloud.google.com/compute/docs/reference/rest/v1/addresses) Example: [‘vertex-ai-ip-range’].
For more information about subnets and network IP ranges, please see https://cloud.google.com/vpc/docs/subnets#manually_created_subnet_ip_ranges.
- Type:
MutableSequence[str]
- deployment_group¶
Optional. The deployment group can be no longer than 64 characters (eg: ‘test’, ‘prod’). If not set, we will use the ‘default’ deployment group.
Creating
deployment_groups
withreserved_ip_ranges
is a recommended practice when the peered network has multiple peering ranges. This creates your deployments from predictable IP spaces for easier traffic administration. Also, one deployment_group (except ‘default’) can only be used with the same reserved_ip_ranges which means if the deployment_group has been used with reserved_ip_ranges: [a, b, c], using it with [a, b] or [d, e] is disallowed.Note: we only support up to 5 deployment groups(not including ‘default’).
- Type:
- psc_automation_configs¶
Optional. If set for PSC deployed index, PSC connection will be automatically created after deployment is done and the endpoint information is populated in private_endpoints.psc_automated_endpoints.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PSCAutomationConfig]
- class google.cloud.aiplatform_v1.types.DeployedIndexAuthConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Used to set up the auth on the DeployedIndex’s private endpoint.
- auth_provider¶
Defines the authentication provider that the DeployedIndex uses.
- class AuthProvider(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for an authentication provider, including support for JSON Web Token (JWT).
- class google.cloud.aiplatform_v1.types.DeployedIndexRef(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Points to a DeployedIndex.
- class google.cloud.aiplatform_v1.types.DeployedModel(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A deployment of a Model. Endpoints contain one or more DeployedModels.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- dedicated_resources¶
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
This field is a member of oneof
prediction_resources
.
- automatic_resources¶
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
This field is a member of oneof
prediction_resources
.
The resource name of the shared DeploymentResourcePool to deploy on. Format:
projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
This field is a member of oneof
prediction_resources
.- Type:
- id¶
Immutable. The ID of the DeployedModel. If not provided upon deployment, Vertex AI will generate a value for this ID.
This value should be 1-10 characters, and valid characters are
/[0-9]/
.- Type:
- model¶
Required. The resource name of the Model that this is the deployment of. Note that the Model may be in a different location than the DeployedModel’s Endpoint.
The resource name may contain version id or version alias to specify the version. Example:
projects/{project}/locations/{location}/models/{model}@2
orprojects/{project}/locations/{location}/models/{model}@golden
if no version is specified, the default version will be deployed.- Type:
- display_name¶
The display name of the DeployedModel. If not provided upon creation, the Model’s display_name is used.
- Type:
- create_time¶
Output only. Timestamp when the DeployedModel was created.
- explanation_spec¶
Explanation configuration for this DeployedModel.
When deploying a Model using [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel], this value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] are optional in the request. If a field of [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] is not populated, the value of the same field of [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec] is inherited. If the corresponding [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec] is not populated, all fields of the [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] will be used for the explanation configuration.
- disable_explanations¶
If true, deploy the model without explainable feature, regardless the existence of [Model.explanation_spec][google.cloud.aiplatform.v1.Model.explanation_spec] or [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec].
- Type:
- service_account¶
The service account that the DeployedModel’s container runs as. Specify the email address of the service account. If this service account is not specified, the container runs as a service account that doesn’t have access to the resource project.
Users deploying the Model must have the
iam.serviceAccounts.actAs
permission on this service account.- Type:
- disable_container_logging¶
For custom-trained Models and AutoML Tabular Models, the container of the DeployedModel instances will send
stderr
andstdout
streams to Cloud Logging by default. Please note that the logs incur cost, which are subject to Cloud Logging pricing.User can disable container logging by setting this flag to true.
- Type:
- enable_access_logging¶
If true, online prediction access logs are sent to Cloud Logging. These logs are like standard server access logs, containing information like timestamp and latency for each prediction request.
Note that logs may incur a cost, especially if your project receives prediction requests at a high queries per second rate (QPS). Estimate your costs before enabling this option.
- Type:
- private_endpoints¶
Output only. Provide paths for users to send predict/explain/health requests directly to the deployed model services running on Cloud via private services access. This field is populated if [network][google.cloud.aiplatform.v1.Endpoint.network] is configured.
- faster_deployment_config¶
Configuration for faster model deployment.
- system_labels¶
System labels to apply to Model Garden deployments. System labels are managed by Google for internal use only.
- class google.cloud.aiplatform_v1.types.DeployedModelRef(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Points to a DeployedModel.
- class google.cloud.aiplatform_v1.types.DeploymentResourcePool(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A description of resources that can be shared by multiple DeployedModels, whose underlying specification consists of a DedicatedResources.
- name¶
Immutable. The resource name of the DeploymentResourcePool. Format:
projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
- Type:
- dedicated_resources¶
Required. The underlying DedicatedResources that the DeploymentResourcePool uses.
- encryption_spec¶
Customer-managed encryption key spec for a DeploymentResourcePool. If set, this DeploymentResourcePool will be secured by this key. Endpoints and the DeploymentResourcePool they deploy in need to have the same EncryptionSpec.
- service_account¶
The service account that the DeploymentResourcePool’s container(s) run as. Specify the email address of the service account. If this service account is not specified, the container(s) run as a service account that doesn’t have access to the resource project.
Users deploying the Models to this DeploymentResourcePool must have the
iam.serviceAccounts.actAs
permission on this service account.- Type:
- disable_container_logging¶
If the DeploymentResourcePool is deployed with custom-trained Models or AutoML Tabular Models, the container(s) of the DeploymentResourcePool will send
stderr
andstdout
streams to Cloud Logging by default. Please note that the logs incur cost, which are subject to Cloud Logging pricing.User can disable container logging by setting this flag to true.
- Type:
- create_time¶
Output only. Timestamp when this DeploymentResourcePool was created.
- class google.cloud.aiplatform_v1.types.DestinationFeatureSetting(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- class google.cloud.aiplatform_v1.types.DirectPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.DirectPredict][google.cloud.aiplatform.v1.PredictionService.DirectPredict].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- inputs¶
The prediction input.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.DirectPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.DirectPredict][google.cloud.aiplatform.v1.PredictionService.DirectPredict].
- outputs¶
The prediction output.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.DirectRawPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1.PredictionService.DirectRawPredict].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- method_name¶
Fully qualified name of the API method being invoked to perform predictions.
Format:
/namespace.Service/Method/
Example:/tensorflow.serving.PredictionService/Predict
- Type:
- class google.cloud.aiplatform_v1.types.DirectRawPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1.PredictionService.DirectRawPredict].
- class google.cloud.aiplatform_v1.types.DiskSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of disk options.
- boot_disk_type¶
Type of the boot disk (default is “pd-ssd”). Valid values: “pd-ssd” (Persistent Disk Solid State Drive) or “pd-standard” (Persistent Disk Hard Disk Drive).
- Type:
- class google.cloud.aiplatform_v1.types.DoubleArray(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of double values.
- class google.cloud.aiplatform_v1.types.DynamicRetrievalConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes the options to customize dynamic retrieval.
- mode¶
The mode of the predictor to be used in dynamic retrieval.
- class google.cloud.aiplatform_v1.types.EncryptionSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a customer-managed encryption key spec that can be applied to a top-level resource.
- kms_key_name¶
Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form:
projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key
. The key needs to be in the same region as where the compute resource is created.- Type:
- class google.cloud.aiplatform_v1.types.Endpoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.
- display_name¶
Required. The display name of the Endpoint. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- deployed_models¶
Output only. The models deployed in this Endpoint. To add or remove DeployedModels use [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel] and [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel] respectively.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedModel]
- traffic_split¶
A map from a DeployedModel’s ID to the percentage of this Endpoint’s traffic that should be forwarded to that DeployedModel.
If a DeployedModel’s ID is not listed in this map, then it receives no traffic.
The traffic percentage values must add up to 100, or map must be empty if the Endpoint is to not accept any traffic at a moment.
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Endpoints. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- create_time¶
Output only. Timestamp when this Endpoint was created.
- update_time¶
Output only. Timestamp when this Endpoint was last updated.
- encryption_spec¶
Customer-managed encryption key spec for an Endpoint. If set, this Endpoint and all sub-resources of this Endpoint will be secured by this key.
- network¶
Optional. The full name of the Google Compute Engine network to which the Endpoint should be peered.
Private services access must already be configured for the network. If left unspecified, the Endpoint is not peered with any network.
Only one of the fields, [network][google.cloud.aiplatform.v1.Endpoint.network] or [enable_private_service_connect][google.cloud.aiplatform.v1.Endpoint.enable_private_service_connect], can be set.
Format:
projects/{project}/global/networks/{network}
. Where{project}
is a project number, as in12345
, and{network}
is network name.- Type:
- enable_private_service_connect¶
Deprecated: If true, expose the Endpoint via private service connect.
Only one of the fields, [network][google.cloud.aiplatform.v1.Endpoint.network] or [enable_private_service_connect][google.cloud.aiplatform.v1.Endpoint.enable_private_service_connect], can be set.
- Type:
- private_service_connect_config¶
Optional. Configuration for private service connect.
[network][google.cloud.aiplatform.v1.Endpoint.network] and [private_service_connect_config][google.cloud.aiplatform.v1.Endpoint.private_service_connect_config] are mutually exclusive.
- model_deployment_monitoring_job¶
Output only. Resource name of the Model Monitoring job associated with this Endpoint if monitoring is enabled by [JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.CreateModelDeploymentMonitoringJob]. Format:
projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}
- Type:
- predict_request_response_logging_config¶
Configures the request-response logging for online prediction.
- dedicated_endpoint_enabled¶
If true, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. Your request to the dedicated DNS will be isolated from other users’ traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won’t be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitation will be removed soon.
- Type:
- dedicated_endpoint_dns¶
Output only. DNS of the dedicated endpoint. Will only be populated if dedicated_endpoint_enabled is true. Format:
https://{endpoint_id}.{region}-{project_number}.prediction.vertexai.goog
.- Type:
- client_connection_config¶
Configurations that are applied to the endpoint for online prediction.
- class google.cloud.aiplatform_v1.types.EntityIdSelector(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Selector for entityId. Getting ids from the given source.
- class google.cloud.aiplatform_v1.types.EntityType(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
- name¶
Immutable. Name of the EntityType. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
The last part entity_type is assigned by the client. The entity_type can be up to 64 characters long and can consist only of ASCII Latin letters A-Z and a-z and underscore(_), and ASCII digits 0-9 starting with a letter. The value will be unique given a featurestore.
- Type:
- create_time¶
Output only. Timestamp when this EntityType was created.
- update_time¶
Output only. Timestamp when this EntityType was most recently updated.
- labels¶
Optional. The labels with user-defined metadata to organize your EntityTypes.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one EntityType (System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- etag¶
Optional. Used to perform a consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- monitoring_config¶
Optional. The default monitoring configuration for all Features with value type ([Feature.ValueType][google.cloud.aiplatform.v1.Feature.ValueType]) BOOL, STRING, DOUBLE or INT64 under this EntityType.
If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled.
- offline_storage_ttl_days¶
Optional. Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than
offline_storage_ttl_days
since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.- Type:
- class google.cloud.aiplatform_v1.types.EnvVar(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents an environment variable present in a Container or Python Module.
- value¶
Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
- Type:
- class google.cloud.aiplatform_v1.types.ErrorAnalysisAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Model error analysis for each annotation.
- attributed_items¶
Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ErrorAnalysisAnnotation.AttributedItem]
- query_type¶
The query type used for finding the attributed items.
- outlier_score¶
The outlier score of this annotated item. Usually defined as the min of all distances from attributed items.
- Type:
- outlier_threshold¶
The threshold used to determine if this annotation is an outlier or not.
- Type:
- class AttributedItem(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.
- annotation_resource_name¶
The unique ID for each annotation. Used by FE to allocate the annotation in DB.
- Type:
- class QueryType(value)[source]¶
Bases:
Enum
The query type used for finding the attributed items.
- Values:
- QUERY_TYPE_UNSPECIFIED (0):
Unspecified query type for model error analysis.
- ALL_SIMILAR (1):
Query similar samples across all classes in the dataset.
- SAME_CLASS_SIMILAR (2):
Query similar samples from the same class of the input sample.
- SAME_CLASS_DISSIMILAR (3):
Query dissimilar samples from the same class of the input sample.
- class google.cloud.aiplatform_v1.types.EvaluateInstancesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for EvaluationService.EvaluateInstances.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- exact_match_input¶
Auto metric instances. Instances and metric spec for exact match metric.
This field is a member of oneof
metric_inputs
.
- bleu_input¶
Instances and metric spec for bleu metric.
This field is a member of oneof
metric_inputs
.
- rouge_input¶
Instances and metric spec for rouge metric.
This field is a member of oneof
metric_inputs
.
- fluency_input¶
LLM-based metric instance. General text generation metrics, applicable to other categories. Input for fluency metric.
This field is a member of oneof
metric_inputs
.
- summarization_quality_input¶
Input for summarization quality metric.
This field is a member of oneof
metric_inputs
.
- pairwise_summarization_quality_input¶
Input for pairwise summarization quality metric.
This field is a member of oneof
metric_inputs
.
- summarization_helpfulness_input¶
Input for summarization helpfulness metric.
This field is a member of oneof
metric_inputs
.
- summarization_verbosity_input¶
Input for summarization verbosity metric.
This field is a member of oneof
metric_inputs
.
- question_answering_quality_input¶
Input for question answering quality metric.
This field is a member of oneof
metric_inputs
.
- pairwise_question_answering_quality_input¶
Input for pairwise question answering quality metric.
This field is a member of oneof
metric_inputs
.
- question_answering_relevance_input¶
Input for question answering relevance metric.
This field is a member of oneof
metric_inputs
.
- question_answering_helpfulness_input¶
Input for question answering helpfulness metric.
This field is a member of oneof
metric_inputs
.
- question_answering_correctness_input¶
Input for question answering correctness metric.
This field is a member of oneof
metric_inputs
.
- tool_call_valid_input¶
Tool call metric instances. Input for tool call valid metric.
This field is a member of oneof
metric_inputs
.
- tool_name_match_input¶
Input for tool name match metric.
This field is a member of oneof
metric_inputs
.
- tool_parameter_key_match_input¶
Input for tool parameter key match metric.
This field is a member of oneof
metric_inputs
.
- tool_parameter_kv_match_input¶
Input for tool parameter key value match metric.
This field is a member of oneof
metric_inputs
.
- comet_input¶
Translation metrics. Input for Comet metric.
This field is a member of oneof
metric_inputs
.
- class google.cloud.aiplatform_v1.types.EvaluateInstancesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for EvaluationService.EvaluateInstances.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- exact_match_results¶
Auto metric evaluation results. Results for exact match metric.
This field is a member of oneof
evaluation_results
.
- fluency_result¶
LLM-based metric evaluation result. General text generation metrics, applicable to other categories. Result for fluency metric.
This field is a member of oneof
evaluation_results
.
- groundedness_result¶
Result for groundedness metric.
This field is a member of oneof
evaluation_results
.
- fulfillment_result¶
Result for fulfillment metric.
This field is a member of oneof
evaluation_results
.
- summarization_quality_result¶
Summarization only metrics. Result for summarization quality metric.
This field is a member of oneof
evaluation_results
.
- pairwise_summarization_quality_result¶
Result for pairwise summarization quality metric.
This field is a member of oneof
evaluation_results
.
- summarization_helpfulness_result¶
Result for summarization helpfulness metric.
This field is a member of oneof
evaluation_results
.
- summarization_verbosity_result¶
Result for summarization verbosity metric.
This field is a member of oneof
evaluation_results
.
- question_answering_quality_result¶
Question answering only metrics. Result for question answering quality metric.
This field is a member of oneof
evaluation_results
.
- pairwise_question_answering_quality_result¶
Result for pairwise question answering quality metric.
This field is a member of oneof
evaluation_results
.
- question_answering_relevance_result¶
Result for question answering relevance metric.
This field is a member of oneof
evaluation_results
.
- question_answering_helpfulness_result¶
Result for question answering helpfulness metric.
This field is a member of oneof
evaluation_results
.
- question_answering_correctness_result¶
Result for question answering correctness metric.
This field is a member of oneof
evaluation_results
.
- pointwise_metric_result¶
Generic metrics. Result for pointwise metric.
This field is a member of oneof
evaluation_results
.
- pairwise_metric_result¶
Result for pairwise metric.
This field is a member of oneof
evaluation_results
.
- tool_call_valid_results¶
Tool call metrics. Results for tool call valid metric.
This field is a member of oneof
evaluation_results
.
- tool_name_match_results¶
Results for tool name match metric.
This field is a member of oneof
evaluation_results
.
- tool_parameter_key_match_results¶
Results for tool parameter key match metric.
This field is a member of oneof
evaluation_results
.
- tool_parameter_kv_match_results¶
Results for tool parameter key value match metric.
This field is a member of oneof
evaluation_results
.
- comet_result¶
Translation metrics. Result for Comet metric.
This field is a member of oneof
evaluation_results
.
- class google.cloud.aiplatform_v1.types.EvaluatedAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
True positive, false positive, or false negative.
EvaluatedAnnotation is only available under ModelEvaluationSlice with slice of
annotationSpec
dimension.- type_¶
Output only. Type of the EvaluatedAnnotation.
- predictions¶
Output only. The model predicted annotations.
For true positive, there is one and only one prediction, which matches the only one ground truth annotation in [ground_truths][google.cloud.aiplatform.v1.EvaluatedAnnotation.ground_truths].
For false positive, there is one and only one prediction, which doesn’t match any ground truth annotation of the corresponding [data_item_view_id][google.cloud.aiplatform.v1.EvaluatedAnnotation.evaluated_data_item_view_id].
For false negative, there are zero or more predictions which are similar to the only ground truth annotation in [ground_truths][google.cloud.aiplatform.v1.EvaluatedAnnotation.ground_truths] but not enough for a match.
The schema of the prediction is stored in [ModelEvaluation.annotation_schema_uri][google.cloud.aiplatform.v1.ModelEvaluation.annotation_schema_uri]
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- ground_truths¶
Output only. The ground truth Annotations, i.e. the Annotations that exist in the test data the Model is evaluated on.
For true positive, there is one and only one ground truth annotation, which matches the only prediction in [predictions][google.cloud.aiplatform.v1.EvaluatedAnnotation.predictions].
For false positive, there are zero or more ground truth annotations that are similar to the only prediction in [predictions][google.cloud.aiplatform.v1.EvaluatedAnnotation.predictions], but not enough for a match.
For false negative, there is one and only one ground truth annotation, which doesn’t match any predictions created by the model.
The schema of the ground truth is stored in [ModelEvaluation.annotation_schema_uri][google.cloud.aiplatform.v1.ModelEvaluation.annotation_schema_uri]
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- data_item_payload¶
Output only. The data item payload that the Model predicted this EvaluatedAnnotation on.
- evaluated_data_item_view_id¶
Output only. ID of the EvaluatedDataItemView under the same ancestor ModelEvaluation. The EvaluatedDataItemView consists of all ground truths and predictions on [data_item_payload][google.cloud.aiplatform.v1.EvaluatedAnnotation.data_item_payload].
- Type:
- explanations¶
Explanations of [predictions][google.cloud.aiplatform.v1.EvaluatedAnnotation.predictions]. Each element of the explanations indicates the explanation for one explanation Method.
The attributions list in the [EvaluatedAnnotationExplanation.explanation][google.cloud.aiplatform.v1.EvaluatedAnnotationExplanation.explanation] object corresponds to the [predictions][google.cloud.aiplatform.v1.EvaluatedAnnotation.predictions] list. For example, the second element in the attributions list explains the second element in the predictions list.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EvaluatedAnnotationExplanation]
- error_analysis_annotations¶
Annotations of model error analysis results.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ErrorAnalysisAnnotation]
- class EvaluatedAnnotationType(value)[source]¶
Bases:
Enum
Describes the type of the EvaluatedAnnotation. The type is determined
- Values:
- EVALUATED_ANNOTATION_TYPE_UNSPECIFIED (0):
Invalid value.
- TRUE_POSITIVE (1):
The EvaluatedAnnotation is a true positive. It has a prediction created by the Model and a ground truth Annotation which the prediction matches.
- FALSE_POSITIVE (2):
The EvaluatedAnnotation is false positive. It has a prediction created by the Model which does not match any ground truth annotation.
- FALSE_NEGATIVE (3):
The EvaluatedAnnotation is false negative. It has a ground truth annotation which is not matched by any of the model created predictions.
- class google.cloud.aiplatform_v1.types.EvaluatedAnnotationExplanation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Explanation result of the prediction produced by the Model.
- explanation_type¶
Explanation type.
For AutoML Image Classification models, possible values are:
image-integrated-gradients
image-xrai
- Type:
- explanation¶
Explanation attribution response details.
- class google.cloud.aiplatform_v1.types.Event(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An edge describing the relationship between an Artifact and an Execution in a lineage graph.
- event_time¶
Output only. Time the Event occurred.
- type_¶
Required. The type of the Event.
- labels¶
The labels with user-defined metadata to annotate Events. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Event (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- class google.cloud.aiplatform_v1.types.ExactMatchInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for exact match metric.
- metric_spec¶
Required. Spec for exact match metric.
- instances¶
Required. Repeated exact match instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ExactMatchInstance]
- class google.cloud.aiplatform_v1.types.ExactMatchInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for exact match instance.
- class google.cloud.aiplatform_v1.types.ExactMatchMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Exact match metric value for an instance.
- class google.cloud.aiplatform_v1.types.ExactMatchResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for exact match metric.
- exact_match_metric_values¶
Output only. Exact match metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ExactMatchMetricValue]
- class google.cloud.aiplatform_v1.types.ExactMatchSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0.
- class google.cloud.aiplatform_v1.types.Examples(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Example-based explainability that returns the nearest neighbors from the provided dataset.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- nearest_neighbor_search_config¶
The full configuration for the generated index, the semantics are the same as [metadata][google.cloud.aiplatform.v1.Index.metadata] and should match NearestNeighborSearchConfig.
This field is a member of oneof
config
.
- presets¶
Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
This field is a member of oneof
config
.
- class ExampleGcsSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Cloud Storage input instances.
- data_format¶
The format in which instances are given, if not specified, assume it’s JSONL format. Currently only JSONL format is supported.
- gcs_source¶
The Cloud Storage location for the input instances.
- class google.cloud.aiplatform_v1.types.ExamplesOverride(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Overrides for example-based explanations.
- restrictions¶
Restrict the resulting nearest neighbors to respect these constraints.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ExamplesRestrictionsNamespace]
- data_format¶
The format of the data being provided with each call.
- class google.cloud.aiplatform_v1.types.ExamplesRestrictionsNamespace(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Restrictions namespace for example-based explanations overrides.
- class google.cloud.aiplatform_v1.types.Execution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Instance of a general execution.
- display_name¶
User provided display name of the Execution. May be up to 128 Unicode characters.
- Type:
- state¶
The state of this Execution. This is a property of the Execution, and does not imply or capture any ongoing process. This property is managed by clients (such as Vertex AI Pipelines) and the system does not prescribe or check the validity of state transitions.
- etag¶
An eTag used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Executions. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Execution (System labels are excluded).
- create_time¶
Output only. Timestamp when this Execution was created.
- update_time¶
Output only. Timestamp when this Execution was last updated.
- schema_title¶
The title of the schema describing the metadata. Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- schema_version¶
The version of the schema in
schema_title
to use.Schema title and version is expected to be registered in earlier Create Schema calls. And both are used together as unique identifiers to identify schemas within the local metadata store.
- Type:
- metadata¶
Properties of the Execution. Top level metadata keys’ heading and trailing spaces will be trimmed. The size of this field should not exceed 200KB.
- class State(value)[source]¶
Bases:
Enum
Describes the state of the Execution.
- Values:
- STATE_UNSPECIFIED (0):
Unspecified Execution state
- NEW (1):
The Execution is new
- RUNNING (2):
The Execution is running
- COMPLETE (3):
The Execution has finished running
- FAILED (4):
The Execution has failed
- CACHED (5):
The Execution completed through Cache hit.
- CANCELLED (6):
The Execution was cancelled.
- class google.cloud.aiplatform_v1.types.ExplainRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
- endpoint¶
Required. The name of the Endpoint requested to serve the explanation. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- instances¶
Required. The instances that are the input to the explanation call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the explanation call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint’s DeployedModels’ [Model’s][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- parameters¶
The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint’s DeployedModels’ [Model’s ][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [parameters_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri].
- explanation_spec_override¶
If specified, overrides the [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of the DeployedModel. Can be used for explaining prediction results with different configurations, such as:
Explaining top-5 predictions results as opposed to top-1;
Increasing path count or step count of the attribution methods to reduce approximate errors;
Using different baselines for explaining the prediction results.
- class google.cloud.aiplatform_v1.types.ExplainResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
- explanations¶
The explanations of the Model’s [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions].
It has the same number of elements as [instances][google.cloud.aiplatform.v1.ExplainRequest.instances] to be explained.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Explanation]
- predictions¶
The predictions that are the output of the predictions call. Same as [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions].
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- class google.cloud.aiplatform_v1.types.Explanation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Explanation of a prediction (provided in [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions]) produced by the Model on a given [instance][google.cloud.aiplatform.v1.ExplainRequest.instances].
- attributions¶
Output only. Feature attributions grouped by predicted outputs.
For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1.Attribution.output_index] can be used to identify which output this attribution is explaining.
By default, we provide Shapley values for the predicted class. However, you can configure the explanation request to generate Shapley values for any other classes too. For example, if a model predicts a probability of
0.4
for approving a loan application, the model’s decision is to reject the application sincep(reject) = 0.6 > p(approve) = 0.4
, and the default Shapley values would be computed for rejection decision and not approval, even though the latter might be the positive class.If users set [ExplanationParameters.top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k], the attributions are sorted by [instance_output_value][google.cloud.aiplatform.v1.Attribution.instance_output_value] in descending order. If [ExplanationParameters.output_indices][google.cloud.aiplatform.v1.ExplanationParameters.output_indices] is specified, the attributions are stored by [Attribution.output_index][google.cloud.aiplatform.v1.Attribution.output_index] in the same order as they appear in the output_indices.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Attribution]
- neighbors¶
Output only. List of the nearest neighbors for example-based explanations. For models deployed with the examples explanations feature enabled, the attributions field is empty and instead the neighbors field is populated.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Neighbor]
- class google.cloud.aiplatform_v1.types.ExplanationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata describing the Model’s input and output for explanation.
- inputs¶
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1.ExplainRequest.instances].
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ExplanationMetadata.InputMetadata]
- outputs¶
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction to be explained.
Currently only one key is allowed.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ExplanationMetadata.OutputMetadata]
- feature_attributions_schema_uri¶
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- latent_space_source¶
Name of the source to generate embeddings for example based explanations.
- Type:
- class InputMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata of the input of a feature.
Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
- input_baselines¶
Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions].
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature’s input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint’s DeployedModels’ [Model’s][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- input_tensor_name¶
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
- Type:
- encoding¶
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
- feature_value_domain¶
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
- indices_tensor_name¶
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
- Type:
- dense_shape_tensor_name¶
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
- Type:
- index_feature_mapping¶
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
- Type:
MutableSequence[str]
- encoded_tensor_name¶
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable.
An encoded tensor is generated if the input tensor is encoded by a lookup table.
- Type:
- encoded_baselines¶
A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- visualization¶
Visualization configurations for image explanation.
- group_name¶
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
- Type:
- class Encoding(value)[source]¶
Bases:
Enum
Defines how a feature is encoded. Defaults to IDENTITY.
- Values:
- ENCODING_UNSPECIFIED (0):
Default value. This is the same as IDENTITY.
- IDENTITY (1):
The tensor represents one feature.
- BAG_OF_FEATURES (2):
The tensor represents a bag of features where each index maps to a feature. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:
input = [27, 6.0, 150] index_feature_mapping = ["age", "height", "weight"]
- BAG_OF_FEATURES_SPARSE (3):
The tensor represents a bag of features where each index maps to a feature. Zero values in the tensor indicates feature being non-existent. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:
input = [2, 0, 5, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"]
- INDICATOR (4):
The tensor is a list of binaries representing whether a feature exists or not (1 indicates existence). [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:
input = [1, 0, 1, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"]
- COMBINED_EMBEDDING (5):
The tensor is encoded into a 1-dimensional array represented by an encoded tensor. [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided for this encoding. For example:
input = ["This", "is", "a", "test", "."] encoded = [0.1, 0.2, 0.3, 0.4, 0.5]
- CONCAT_EMBEDDING (6):
Select this encoding when the input tensor is encoded into a 2-dimensional array represented by an encoded tensor. [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided for this encoding. The first dimension of the encoded tensor’s shape is the same as the input tensor’s shape. For example:
input = ["This", "is", "a", "test", "."] encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], [0.2, 0.1, 0.4, 0.3, 0.5], [0.5, 0.1, 0.3, 0.5, 0.4], [0.5, 0.3, 0.1, 0.2, 0.4], [0.4, 0.3, 0.2, 0.5, 0.1]]
- class FeatureValueDomain(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.
- original_mean¶
If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
- Type:
- class Visualization(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Visualization configurations for image explanation.
- type_¶
Type of the image visualization. Only applicable to [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
- polarity¶
Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
- color_map¶
The color scheme used for the highlighted areas.
Defaults to PINK_GREEN for [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], which shows positive attributions in green and negative in pink.
Defaults to VIRIDIS for [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], which highlights the most influential regions in yellow and the least influential in blue.
- clip_percent_upperbound¶
Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
- Type:
- clip_percent_lowerbound¶
Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
- Type:
- overlay_type¶
How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
- class ColorMap(value)[source]¶
Bases:
Enum
The color scheme used for highlighting areas.
- Values:
- COLOR_MAP_UNSPECIFIED (0):
Should not be used.
- PINK_GREEN (1):
Positive: green. Negative: pink.
- VIRIDIS (2):
Viridis color map: A perceptually uniform color mapping which is easier to see by those with colorblindness and progresses from yellow to green to blue. Positive: yellow. Negative: blue.
- RED (3):
Positive: red. Negative: red.
- GREEN (4):
Positive: green. Negative: green.
- RED_GREEN (6):
Positive: green. Negative: red.
- PINK_WHITE_GREEN (5):
PiYG palette.
- class OverlayType(value)[source]¶
Bases:
Enum
How the original image is displayed in the visualization.
- Values:
- OVERLAY_TYPE_UNSPECIFIED (0):
Default value. This is the same as NONE.
- NONE (1):
No overlay.
- ORIGINAL (2):
The attributions are shown on top of the original image.
- GRAYSCALE (3):
The attributions are shown on top of grayscaled version of the original image.
- MASK_BLACK (4):
The attributions are used as a mask to reveal predictive parts of the image and hide the un-predictive parts.
- class Polarity(value)[source]¶
Bases:
Enum
Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
- Values:
- POLARITY_UNSPECIFIED (0):
Default value. This is the same as POSITIVE.
- POSITIVE (1):
Highlights the pixels/outlines that were most influential to the model’s prediction.
- NEGATIVE (2):
Setting polarity to negative highlights areas that does not lead to the models’s current prediction.
- BOTH (3):
Shows both positive and negative attributions.
- class Type(value)[source]¶
Bases:
Enum
Type of the image visualization. Only applicable to [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution].
- Values:
- TYPE_UNSPECIFIED (0):
Should not be used.
- PIXELS (1):
Shows which pixel contributed to the image prediction.
- OUTLINES (2):
Shows which region contributed to the image prediction by outlining the region.
- class OutputMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata of the prediction output to be explained.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- index_display_name_mapping¶
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It’s not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The [Attribution.output_display_name][google.cloud.aiplatform.v1.Attribution.output_display_name] is populated by locating in the mapping with [Attribution.output_index][google.cloud.aiplatform.v1.Attribution.output_index].
This field is a member of oneof
display_name_mapping
.
- display_name_mapping_key¶
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by [Attribution.output_index][google.cloud.aiplatform.v1.Attribution.output_index] for a specific output.
This field is a member of oneof
display_name_mapping
.- Type:
- class google.cloud.aiplatform_v1.types.ExplanationMetadataOverride(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The [ExplanationMetadata][google.cloud.aiplatform.v1.ExplanationMetadata] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
- inputs¶
Required. Overrides the [input metadata][google.cloud.aiplatform.v1.ExplanationMetadata.inputs] of the features. The key is the name of the feature to be overridden. The keys specified here must exist in the input metadata to be overridden. If a feature is not specified here, the corresponding feature’s input metadata is not overridden.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ExplanationMetadataOverride.InputMetadataOverride]
- class InputMetadataOverride(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The [input metadata][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata] entries to be overridden.
- input_baselines¶
Baseline inputs for this feature.
This overrides the
input_baseline
field of the [ExplanationMetadata.InputMetadata][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata] object of the corresponding feature’s input metadata. If it’s not specified, the original baselines are not overridden.- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- class google.cloud.aiplatform_v1.types.ExplanationParameters(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Parameters to configure explaining for Model’s predictions.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- sampled_shapley_attribution¶
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
This field is a member of oneof
method
.
- integrated_gradients_attribution¶
An attribution method that computes Aumann-Shapley values taking advantage of the model’s fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
This field is a member of oneof
method
.
- xrai_attribution¶
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model’s fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
This field is a member of oneof
method
.
- examples¶
Example-based explanations that returns the nearest neighbors from the provided dataset.
This field is a member of oneof
method
.
- top_k¶
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
- Type:
- output_indices¶
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it’s explaining.
If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
- class google.cloud.aiplatform_v1.types.ExplanationSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specification of Model explanation.
- parameters¶
Required. Parameters that configure explaining of the Model’s predictions.
- metadata¶
Optional. Metadata describing the Model’s input and output for explanation.
- class google.cloud.aiplatform_v1.types.ExplanationSpecOverride(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
- parameters¶
The parameters to be overridden. Note that the attribution method cannot be changed. If not specified, no parameter is overridden.
- metadata¶
The metadata to be overridden. If not specified, no metadata is overridden.
- examples_override¶
The example-based explanations parameter overrides.
- class google.cloud.aiplatform_v1.types.ExportDataConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes what part of the Dataset is to be exported, the destination of the export and how to export.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- gcs_destination¶
The Google Cloud Storage location where the output is to be written to. In the given directory a new directory will be created with name:
export-data-<dataset-display-name>-<timestamp-of-export-call>
where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export output will be written into that directory. Inside that directory, annotations with the same schema will be grouped into sub directories which are named with the corresponding annotations’ schema title. Inside these sub directories, a schema.yaml will be created to describe the output format.This field is a member of oneof
destination
.
- fraction_split¶
Split based on fractions defining the size of each set.
This field is a member of oneof
split
.
- filter_split¶
Split based on the provided filters for each set.
This field is a member of oneof
split
.
- annotations_filter¶
An expression for filtering what part of the Dataset is to be exported. Only Annotations that match this filter will be exported. The filter syntax is the same as in [ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
- Type:
- saved_query_id¶
The ID of a SavedQuery (annotation set) under the Dataset specified by [ExportDataRequest.name][google.cloud.aiplatform.v1.ExportDataRequest.name] used for filtering Annotations for training.
Only used for custom training data export use cases. Only applicable to Datasets that have SavedQueries.
Only Annotations that are associated with this SavedQuery are used in respectively training. When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1.ExportDataConfig.annotations_filter], the Annotations used for training are filtered by both [saved_query_id][google.cloud.aiplatform.v1.ExportDataConfig.saved_query_id] and [annotations_filter][google.cloud.aiplatform.v1.ExportDataConfig.annotations_filter].
Only one of [saved_query_id][google.cloud.aiplatform.v1.ExportDataConfig.saved_query_id] and [annotation_schema_uri][google.cloud.aiplatform.v1.ExportDataConfig.annotation_schema_uri] should be specified as both of them represent the same thing: problem type.
- Type:
- annotation_schema_uri¶
The Cloud Storage URI that points to a YAML file describing the annotation schema. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/annotation/, note that the chosen schema must be consistent with [metadata][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri] of the Dataset specified by [ExportDataRequest.name][google.cloud.aiplatform.v1.ExportDataRequest.name].
Only used for custom training data export use cases. Only applicable to Datasets that have DataItems and Annotations.
Only Annotations that both match this schema and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on.
When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1.ExportDataConfig.annotations_filter], the Annotations used for training are filtered by both [annotations_filter][google.cloud.aiplatform.v1.ExportDataConfig.annotations_filter] and [annotation_schema_uri][google.cloud.aiplatform.v1.ExportDataConfig.annotation_schema_uri].
- Type:
- export_use¶
Indicates the usage of the exported files.
- class ExportUse(value)[source]¶
Bases:
Enum
ExportUse indicates the usage of the exported files. It restricts file destination, format, annotations to be exported, whether to allow unannotated data to be exported and whether to clone files to temp Cloud Storage bucket.
- Values:
- EXPORT_USE_UNSPECIFIED (0):
Regular user export.
- CUSTOM_CODE_TRAINING (6):
Export for custom code training.
- class google.cloud.aiplatform_v1.types.ExportDataOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.ExportDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
- name¶
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- export_config¶
Required. The desired output location.
- class google.cloud.aiplatform_v1.types.ExportDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
- exported_files¶
All of the files that are exported in this export operation. For custom code training export, only three (training, validation and test) Cloud Storage paths in wildcard format are populated (for example, gs://…/training-*).
- Type:
MutableSequence[str]
- data_stats¶
Only present for custom code training export use case. Records data stats, i.e., train/validation/test item/annotation counts calculated during the export operation.
- class google.cloud.aiplatform_v1.types.ExportFeatureValuesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that exports Features values.
- generic_metadata¶
Operation metadata for Featurestore export Feature values.
- class google.cloud.aiplatform_v1.types.ExportFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- snapshot_export¶
Exports the latest Feature values of all entities of the EntityType within a time range.
This field is a member of oneof
mode
.
- full_export¶
Exports all historical values of all entities of the EntityType within a time range
This field is a member of oneof
mode
.
- entity_type¶
Required. The resource name of the EntityType from which to export Feature values. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
- Type:
- destination¶
Required. Specifies destination location and format.
- feature_selector¶
Required. Selects Features to export values of.
- settings¶
Per-Feature export settings.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DestinationFeatureSetting]
- class FullExport(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].
- start_time¶
Excludes Feature values with feature generation timestamp before this timestamp. If not set, retrieve oldest values kept in Feature Store. Timestamp, if present, must not have higher than millisecond precision.
- end_time¶
Exports Feature values as of this timestamp. If not set, retrieve values as of now. Timestamp, if present, must not have higher than millisecond precision.
- class SnapshotExport(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].
- snapshot_time¶
Exports Feature values as of this timestamp. If not set, retrieve values as of now. Timestamp, if present, must not have higher than millisecond precision.
- start_time¶
Excludes Feature values with feature generation timestamp before this timestamp. If not set, retrieve oldest values kept in Feature Store. Timestamp, if present, must not have higher than millisecond precision.
- class google.cloud.aiplatform_v1.types.ExportFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
- class google.cloud.aiplatform_v1.types.ExportFilterSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as ‘-’ (the minus sign).
Supported only for unstructured Datasets.
- training_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to train the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- validation_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to validate the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- test_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to test the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- class google.cloud.aiplatform_v1.types.ExportFractionSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns the input data to training, validation, and test sets as per the given fractions. Any of
training_fraction
,validation_fraction
andtest_fraction
may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.- training_fraction¶
The fraction of the input data that is to be used to train the Model.
- Type:
- validation_fraction¶
The fraction of the input data that is to be used to validate the Model.
- Type:
- class google.cloud.aiplatform_v1.types.ExportModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
- generic_metadata¶
The common part of the operation metadata.
- output_info¶
Output only. Information further describing the output of this Model export.
- class OutputInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Further describes the output of the ExportModel. Supplements [ExportModelRequest.OutputConfig][google.cloud.aiplatform.v1.ExportModelRequest.OutputConfig].
- artifact_output_uri¶
Output only. If the Model artifact is being exported to Google Cloud Storage this is the full path of the directory created, into which the Model files are being written to.
- Type:
- class google.cloud.aiplatform_v1.types.ExportModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel].
- name¶
Required. The resource name of the Model to export. The resource name may contain version id or version alias to specify the version, if no version is specified, the default version will be exported.
- Type:
- output_config¶
Required. The desired output location and configuration.
- class OutputConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Output configuration for the Model export.
- export_format_id¶
The ID of the format in which the Model must be exported. Each Model lists the [export formats it supports][google.cloud.aiplatform.v1.Model.supported_export_formats]. If no value is provided here, then the first from the list of the Model’s supported formats is used by default.
- Type:
- artifact_destination¶
The Cloud Storage location where the Model artifact is to be written to. Under the directory given as the destination a new one with name “
model-export-<model-display-name>-<timestamp-of-export-call>
”, where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format, will be created. Inside, the Model and any of its supporting files will be written. This field should only be set when theexportableContent
field of the [Model.supported_export_formats] object containsARTIFACT
.
- image_destination¶
The Google Container Registry or Artifact Registry uri where the Model container image will be copied to. This field should only be set when the
exportableContent
field of the [Model.supported_export_formats] object containsIMAGE
.
- class google.cloud.aiplatform_v1.types.ExportModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
- class google.cloud.aiplatform_v1.types.ExportTensorboardTimeSeriesDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
- tensorboard_time_series¶
Required. The resource name of the TensorboardTimeSeries to export data from. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}
- Type:
- page_size¶
The maximum number of data points to return per page. The default page_size is 1000. Values must be between 1 and 10000. Values above 10000 are coerced to 10000.
- Type:
- page_token¶
A page token, received from a previous [ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData] must match the call that provided the page token.
- Type:
- class google.cloud.aiplatform_v1.types.ExportTensorboardTimeSeriesDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
- time_series_data_points¶
The returned time series data points.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TimeSeriesDataPoint]
- class google.cloud.aiplatform_v1.types.FasterDeploymentConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for faster model deployment.
- class google.cloud.aiplatform_v1.types.Feature(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Feature Metadata information. For example, color is a feature that describes an apple.
- name¶
Immutable. Name of the Feature. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}/features/{feature}
projects/{project}/locations/{location}/featureGroups/{feature_group}/features/{feature}
The last part feature is assigned by the client. The feature can be up to 64 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscore(_), and ASCII digits 0-9 starting with a letter. The value will be unique given an entity type.
- Type:
- value_type¶
Immutable. Only applicable for Vertex AI Feature Store (Legacy). Type of Feature value.
- create_time¶
Output only. Only applicable for Vertex AI Feature Store (Legacy). Timestamp when this EntityType was created.
- update_time¶
Output only. Only applicable for Vertex AI Feature Store (Legacy). Timestamp when this EntityType was most recently updated.
- labels¶
Optional. The labels with user-defined metadata to organize your Features. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one Feature (System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- etag¶
Used to perform a consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- disable_monitoring¶
Optional. Only applicable for Vertex AI Feature Store (Legacy). If not set, use the monitoring_config defined for the EntityType this Feature belongs to. Only Features with type ([Feature.ValueType][google.cloud.aiplatform.v1.Feature.ValueType]) BOOL, STRING, DOUBLE or INT64 can enable monitoring.
If set to true, all types of data monitoring are disabled despite the config on EntityType.
- Type:
- monitoring_stats_anomalies¶
Output only. Only applicable for Vertex AI Feature Store (Legacy). The list of historical stats and anomalies with specified objectives.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Feature.MonitoringStatsAnomaly]
- version_column_name¶
Only applicable for Vertex AI Feature Store. The name of the BigQuery Table/View column hosting data for this version. If no value is provided, will use feature_id.
- Type:
- point_of_contact¶
Entity responsible for maintaining this feature. Can be comma separated list of email addresses or URIs.
- Type:
- class MonitoringStatsAnomaly(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of historical [SnapshotAnalysis][google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.SnapshotAnalysis] or [ImportFeaturesAnalysis][google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.ImportFeaturesAnalysis] stats requested by user, sorted by [FeatureStatsAnomaly.start_time][google.cloud.aiplatform.v1.FeatureStatsAnomaly.start_time] descending.
- objective¶
Output only. The objective for each stats.
- feature_stats_anomaly¶
Output only. The stats and anomalies generated at specific timestamp.
- class Objective(value)[source]¶
Bases:
Enum
If the objective in the request is both Import Feature Analysis and Snapshot Analysis, this objective could be one of them. Otherwise, this objective should be the same as the objective in the request.
- Values:
- OBJECTIVE_UNSPECIFIED (0):
If it’s OBJECTIVE_UNSPECIFIED, monitoring_stats will be empty.
- IMPORT_FEATURE_ANALYSIS (1):
Stats are generated by Import Feature Analysis.
- SNAPSHOT_ANALYSIS (2):
Stats are generated by Snapshot Analysis.
- class ValueType(value)[source]¶
Bases:
Enum
Only applicable for Vertex AI Legacy Feature Store. An enum representing the value type of a feature.
- Values:
- VALUE_TYPE_UNSPECIFIED (0):
The value type is unspecified.
- BOOL (1):
Used for Feature that is a boolean.
- BOOL_ARRAY (2):
Used for Feature that is a list of boolean.
- DOUBLE (3):
Used for Feature that is double.
- DOUBLE_ARRAY (4):
Used for Feature that is a list of double.
- INT64 (9):
Used for Feature that is INT64.
- INT64_ARRAY (10):
Used for Feature that is a list of INT64.
- STRING (11):
Used for Feature that is string.
- STRING_ARRAY (12):
Used for Feature that is a list of String.
- BYTES (13):
Used for Feature that is bytes.
- STRUCT (14):
Used for Feature that is struct.
- class google.cloud.aiplatform_v1.types.FeatureGroup(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Vertex AI Feature Group.
- big_query¶
Indicates that features for this group come from BigQuery Table/View. By default treats the source as a sparse time series source. The BigQuery source table or view must have at least one entity ID column and a column named
feature_timestamp
.This field is a member of oneof
source
.
- name¶
Identifier. Name of the FeatureGroup. Format:
projects/{project}/locations/{location}/featureGroups/{featureGroup}
- Type:
- create_time¶
Output only. Timestamp when this FeatureGroup was created.
- update_time¶
Output only. Timestamp when this FeatureGroup was last updated.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
Optional. The labels with user-defined metadata to organize your FeatureGroup.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one FeatureGroup(System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- class BigQuery(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input source type for BigQuery Tables and Views.
- big_query_source¶
Required. Immutable. The BigQuery source URI that points to either a BigQuery Table or View.
- entity_id_columns¶
Optional. Columns to construct entity_id / row keys. If not provided defaults to
entity_id
.- Type:
MutableSequence[str]
- time_series¶
Optional. If the source is a time-series source, this can be set to control how downstream sources (ex: [FeatureView][google.cloud.aiplatform.v1.FeatureView] ) will treat time-series sources. If not set, will treat the source as a time-series source with
feature_timestamp
as timestamp column and no scan boundary.
- dense¶
Optional. If set, all feature values will be fetched from a single row per unique entityId including nulls. If not set, will collapse all rows for each unique entityId into a singe row with any non-null values if present, if no non-null values are present will sync null. ex: If source has schema
(entity_id, feature_timestamp, f0, f1)
and the following rows:(e1, 2020-01-01T10:00:00.123Z, 10, 15)
(e1, 2020-02-01T10:00:00.123Z, 20, null)
If dense is set,(e1, 20, null)
is synced to online stores. If dense is not set,(e1, 20, 15)
is synced to online stores.- Type:
- class google.cloud.aiplatform_v1.types.FeatureNoiseSigma(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.
- noise_sigma¶
Noise sigma per feature. No noise is added to features that are not set.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureNoiseSigma.NoiseSigmaForFeature]
- class NoiseSigmaForFeature(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Noise sigma for a single feature.
- name¶
The name of the input feature for which noise sigma is provided. The features are defined in [explanation metadata inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs].
- Type:
- sigma¶
This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to [noise_sigma][google.cloud.aiplatform.v1.SmoothGradConfig.noise_sigma] but represents the noise added to the current feature. Defaults to 0.1.
- Type:
- class google.cloud.aiplatform_v1.types.FeatureOnlineStore(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Vertex AI Feature Online Store provides a centralized repository for serving ML features and embedding indexes at low latency. The Feature Online Store is a top-level container.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- bigtable¶
Contains settings for the Cloud Bigtable instance that will be created to serve featureValues for all FeatureViews under this FeatureOnlineStore.
This field is a member of oneof
storage_type
.
- optimized¶
Contains settings for the Optimized store that will be created to serve featureValues for all FeatureViews under this FeatureOnlineStore. When choose Optimized storage type, need to set [PrivateServiceConnectConfig.enable_private_service_connect][google.cloud.aiplatform.v1.PrivateServiceConnectConfig.enable_private_service_connect] to use private endpoint. Otherwise will use public endpoint by default.
This field is a member of oneof
storage_type
.
- name¶
Identifier. Name of the FeatureOnlineStore. Format:
projects/{project}/locations/{location}/featureOnlineStores/{featureOnlineStore}
- Type:
- create_time¶
Output only. Timestamp when this FeatureOnlineStore was created.
- update_time¶
Output only. Timestamp when this FeatureOnlineStore was last updated.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
Optional. The labels with user-defined metadata to organize your FeatureOnlineStore.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one FeatureOnlineStore(System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- state¶
Output only. State of the featureOnlineStore.
- dedicated_serving_endpoint¶
Optional. The dedicated serving endpoint for this FeatureOnlineStore, which is different from common Vertex service endpoint.
- encryption_spec¶
Optional. Customer-managed encryption key spec for data storage. If set, online store will be secured by this key.
- class Bigtable(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- auto_scaling¶
Required. Autoscaling config applied to Bigtable Instance.
- class AutoScaling(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- min_node_count¶
Required. The minimum number of nodes to scale down to. Must be greater than or equal to 1.
- Type:
- max_node_count¶
Required. The maximum number of nodes to scale up to. Must be greater than or equal to min_node_count, and less than or equal to 10 times of ‘min_node_count’.
- Type:
- cpu_utilization_target¶
Optional. A percentage of the cluster’s CPU capacity. Can be from 10% to 80%. When a cluster’s CPU utilization exceeds the target that you have set, Bigtable immediately adds nodes to the cluster. When CPU utilization is substantially lower than the target, Bigtable removes nodes. If not set will default to 50%.
- Type:
- class DedicatedServingEndpoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The dedicated serving endpoint for this FeatureOnlineStore. Only need to set when you choose Optimized storage type. Public endpoint is provisioned by default.
- public_endpoint_domain_name¶
Output only. This field will be populated with the domain name to use for this FeatureOnlineStore
- Type:
- private_service_connect_config¶
Optional. Private service connect config. The private service connection is available only for Optimized storage type, not for embedding management now. If [PrivateServiceConnectConfig.enable_private_service_connect][google.cloud.aiplatform.v1.PrivateServiceConnectConfig.enable_private_service_connect] set to true, customers will use private service connection to send request. Otherwise, the connection will set to public endpoint.
- class Optimized(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Optimized storage type
- class State(value)[source]¶
Bases:
Enum
Possible states a featureOnlineStore can have.
- Values:
- STATE_UNSPECIFIED (0):
Default value. This value is unused.
- STABLE (1):
State when the featureOnlineStore configuration is not being updated and the fields reflect the current configuration of the featureOnlineStore. The featureOnlineStore is usable in this state.
- UPDATING (2):
The state of the featureOnlineStore configuration when it is being updated. During an update, the fields reflect either the original configuration or the updated configuration of the featureOnlineStore. The featureOnlineStore is still usable in this state.
- class google.cloud.aiplatform_v1.types.FeatureSelector(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Selector for Features of an EntityType.
- id_matcher¶
Required. Matches Features based on ID.
- class google.cloud.aiplatform_v1.types.FeatureStatsAnomaly(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
- score¶
Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW][google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW] and [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT][google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT].
- Type:
- stats_uri¶
Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message tensorflow.metadata.v0.FeatureNameStatistics.
- Type:
- anomaly_uri¶
Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message [tensorflow.metadata.v0.AnomalyInfo] (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
- Type:
- distribution_deviation¶
Deviation from the current stats to baseline stats.
For categorical feature, the distribution
distance is calculated by L-inifinity norm.
For numerical feature, the distribution
distance is calculated by Jensen–Shannon divergence.
- Type:
- anomaly_detection_threshold¶
This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from [ThresholdConfig.value][google.cloud.aiplatform.v1.ThresholdConfig.value].
- Type:
- start_time¶
The start timestamp of window where stats were generated. For objectives where time window doesn’t make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
- end_time¶
The end timestamp of window where stats were generated. For objectives where time window doesn’t make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
- class google.cloud.aiplatform_v1.types.FeatureValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value for a feature.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- metadata¶
Metadata of feature value.
- class Metadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata of feature value.
- generate_time¶
Feature generation timestamp. Typically, it is provided by user at feature ingestion time. If not, feature store will use the system timestamp when the data is ingested into feature store. For streaming ingestion, the time, aligned by days, must be no older than five years (1825 days) and no later than one year (366 days) in the future.
- class google.cloud.aiplatform_v1.types.FeatureValueDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A destination location for Feature values and format.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- bigquery_destination¶
Output in BigQuery format. [BigQueryDestination.output_uri][google.cloud.aiplatform.v1.BigQueryDestination.output_uri] in [FeatureValueDestination.bigquery_destination][google.cloud.aiplatform.v1.FeatureValueDestination.bigquery_destination] must refer to a table.
This field is a member of oneof
destination
.
- tfrecord_destination¶
Output in TFRecord format.
Below are the mapping from Feature value type in Featurestore to Feature value type in TFRecord:
Value type in Featurestore | Value type in TFRecord DOUBLE, DOUBLE_ARRAY | FLOAT_LIST INT64, INT64_ARRAY | INT64_LIST STRING, STRING_ARRAY, BYTES | BYTES_LIST true -> byte_string("true"), false -> byte_string("false") BOOL, BOOL_ARRAY (true, false) | BYTES_LIST
This field is a member of oneof
destination
.
- class google.cloud.aiplatform_v1.types.FeatureValueList(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Container for list of values.
- values¶
A list of feature values. All of them should be the same data type.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureValue]
- class google.cloud.aiplatform_v1.types.FeatureView(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
FeatureView is representation of values that the FeatureOnlineStore will serve based on its syncConfig.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- big_query_source¶
Optional. Configures how data is supposed to be extracted from a BigQuery source to be loaded onto the FeatureOnlineStore.
This field is a member of oneof
source
.
- feature_registry_source¶
Optional. Configures the features from a Feature Registry source that need to be loaded onto the FeatureOnlineStore.
This field is a member of oneof
source
.
- vertex_rag_source¶
Optional. The Vertex RAG Source that the FeatureView is linked to.
This field is a member of oneof
source
.
- name¶
Identifier. Name of the FeatureView. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}
- Type:
- create_time¶
Output only. Timestamp when this FeatureView was created.
- update_time¶
Output only. Timestamp when this FeatureView was last updated.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
Optional. The labels with user-defined metadata to organize your FeatureViews.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one FeatureOnlineStore(System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- sync_config¶
Configures when data is to be synced/updated for this FeatureView. At the end of the sync the latest featureValues for each entityId of this FeatureView are made ready for online serving.
- index_config¶
Optional. Configuration for index preparation for vector search. It contains the required configurations to create an index from source data, so that approximate nearest neighbor (a.k.a ANN) algorithms search can be performed during online serving.
- class BigQuerySource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- uri¶
Required. The BigQuery view URI that will be materialized on each sync trigger based on FeatureView.SyncConfig.
- Type:
- class FeatureRegistrySource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A Feature Registry source for features that need to be synced to Online Store.
- feature_groups¶
Required. List of features that need to be synced to Online Store.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureView.FeatureRegistrySource.FeatureGroup]
- project_number¶
Optional. The project number of the parent project of the Feature Groups.
This field is a member of oneof
_project_number
.- Type:
- class IndexConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for vector indexing.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- tree_ah_config¶
Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this
paper for more details:
https://arxiv.org/abs/1908.10396
This field is a member of oneof
algorithm_config
.
- brute_force_config¶
Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.
This field is a member of oneof
algorithm_config
.
- embedding_column¶
Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.
- Type:
- filter_columns¶
Optional. Columns of features that’re used to filter vector search results.
- Type:
MutableSequence[str]
- crowding_column¶
Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by [FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1.FeatureOnlineStoreService.SearchNearestEntities] to diversify search results. If [NearestNeighborQuery.per_crowding_attribute_neighbor_count][google.cloud.aiplatform.v1.NearestNeighborQuery.per_crowding_attribute_neighbor_count] is set to K in [SearchNearestEntitiesRequest][google.cloud.aiplatform.v1.SearchNearestEntitiesRequest], it’s guaranteed that no more than K entities of the same crowding attribute are returned in the response.
- Type:
- embedding_dimension¶
Optional. The number of dimensions of the input embedding.
This field is a member of oneof
_embedding_dimension
.- Type:
- distance_measure_type¶
Optional. The distance measure used in nearest neighbor search.
- class BruteForceConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration options for using brute force search.
- class DistanceMeasureType(value)[source]¶
Bases:
Enum
The distance measure used in nearest neighbor search.
- Values:
- DISTANCE_MEASURE_TYPE_UNSPECIFIED (0):
Should not be set.
- SQUARED_L2_DISTANCE (1):
Euclidean (L_2) Distance.
- COSINE_DISTANCE (2):
Cosine Distance. Defined as 1 - cosine similarity.
We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead of COSINE distance. Our algorithms have been more optimized for DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is mathematically equivalent to COSINE distance and results in the same ranking.
- DOT_PRODUCT_DISTANCE (3):
Dot Product Distance. Defined as a negative of the dot product.
- class SyncConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for Sync. Only one option is set.
- cron¶
Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled runs. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: “CRON_TZ=${IANA_TIME_ZONE}” or “TZ=${IANA_TIME_ZONE}”. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, “CRON_TZ=America/New_York 1 * * * *”, or “TZ=America/New_York 1 * * * *”.
- Type:
- class VertexRagSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A Vertex Rag source for features that need to be synced to Online Store.
- uri¶
Required. The BigQuery view/table URI that will be materialized on each manual sync trigger. The table/view is expected to have the following columns and types at least:
corpus_id
(STRING, NULLABLE/REQUIRED)file_id
(STRING, NULLABLE/REQUIRED)chunk_id
(STRING, NULLABLE/REQUIRED)chunk_data_type
(STRING, NULLABLE/REQUIRED)chunk_data
(STRING, NULLABLE/REQUIRED)embeddings
(FLOAT, REPEATED)file_original_uri
(STRING, NULLABLE/REQUIRED)
- Type:
- class google.cloud.aiplatform_v1.types.FeatureViewDataFormat(value)[source]¶
Bases:
Enum
Format of the data in the Feature View.
- Values:
- FEATURE_VIEW_DATA_FORMAT_UNSPECIFIED (0):
Not set. Will be treated as the KeyValue format.
- KEY_VALUE (1):
Return response data in key-value format.
- PROTO_STRUCT (2):
Return response data in proto Struct format.
- class google.cloud.aiplatform_v1.types.FeatureViewDataKey(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Lookup key for a feature view.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class google.cloud.aiplatform_v1.types.FeatureViewSync(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
FeatureViewSync is a representation of sync operation which copies data from data source to Feature View in Online Store.
- name¶
Identifier. Name of the FeatureViewSync. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}/featureViewSyncs/{feature_view_sync}
- Type:
- create_time¶
Output only. Time when this FeatureViewSync is created. Creation of a FeatureViewSync means that the job is pending / waiting for sufficient resources but may not have started the actual data transfer yet.
- run_time¶
Output only. Time when this FeatureViewSync is finished.
- Type:
google.type.interval_pb2.Interval
- final_status¶
Output only. Final status of the FeatureViewSync.
- Type:
google.rpc.status_pb2.Status
- sync_summary¶
Output only. Summary of the sync job.
- class SyncSummary(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Summary from the Sync job. For continuous syncs, the summary is updated periodically. For batch syncs, it gets updated on completion of the sync.
- system_watermark_time¶
Lower bound of the system time watermark for the sync job. This is only set for continuously syncing feature views.
- class google.cloud.aiplatform_v1.types.Featurestore(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.
- name¶
Output only. Name of the Featurestore. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
- Type:
- create_time¶
Output only. Timestamp when this Featurestore was created.
- update_time¶
Output only. Timestamp when this Featurestore was last updated.
- etag¶
Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
Optional. The labels with user-defined metadata to organize your Featurestore.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one Featurestore(System labels are excluded).” System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- online_serving_config¶
Optional. Config for online storage resources. The field should not co-exist with the field of
OnlineStoreReplicationConfig
. If both of it and OnlineStoreReplicationConfig are unset, the feature store will not have an online store and cannot be used for online serving.
- state¶
Output only. State of the featurestore.
- online_storage_ttl_days¶
Optional. TTL in days for feature values that will be stored in online serving storage. The Feature Store online storage periodically removes obsolete feature values older than
online_storage_ttl_days
since the feature generation time. Note thatonline_storage_ttl_days
should be less than or equal tooffline_storage_ttl_days
for each EntityType under a featurestore. If not set, default to 4000 days- Type:
- encryption_spec¶
Optional. Customer-managed encryption key spec for data storage. If set, both of the online and offline data storage will be secured by this key.
- class OnlineServingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
OnlineServingConfig specifies the details for provisioning online serving resources.
- fixed_node_count¶
The number of nodes for the online store. The number of nodes doesn’t scale automatically, but you can manually update the number of nodes. If set to 0, the featurestore will not have an online store and cannot be used for online serving.
- Type:
- scaling¶
Online serving scaling configuration. Only one of
fixed_node_count
andscaling
can be set. Setting one will reset the other.
- class Scaling(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).
- min_node_count¶
Required. The minimum number of nodes to scale down to. Must be greater than or equal to 1.
- Type:
- max_node_count¶
The maximum number of nodes to scale up to. Must be greater than min_node_count, and less than or equal to 10 times of ‘min_node_count’.
- Type:
- cpu_utilization_target¶
Optional. The cpu utilization that the Autoscaler should be trying to achieve. This number is on a scale from 0 (no utilization) to 100 (total utilization), and is limited between 10 and 80. When a cluster’s CPU utilization exceeds the target that you have set, Bigtable immediately adds nodes to the cluster. When CPU utilization is substantially lower than the target, Bigtable removes nodes. If not set or set to 0, default to 50.
- Type:
- class State(value)[source]¶
Bases:
Enum
Possible states a featurestore can have.
- Values:
- STATE_UNSPECIFIED (0):
Default value. This value is unused.
- STABLE (1):
State when the featurestore configuration is not being updated and the fields reflect the current configuration of the featurestore. The featurestore is usable in this state.
- UPDATING (2):
The state of the featurestore configuration when it is being updated. During an update, the fields reflect either the original configuration or the updated configuration of the featurestore. For example,
online_serving_config.fixed_node_count
can take minutes to update. While the update is in progress, the featurestore is in the UPDATING state, and the value offixed_node_count
can be the original value or the updated value, depending on the progress of the operation. Until the update completes, the actual number of nodes can still be the original value offixed_node_count
. The featurestore is still usable in this state.
- class google.cloud.aiplatform_v1.types.FeaturestoreMonitoringConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration of how features in Featurestore are monitored.
- snapshot_analysis¶
The config for Snapshot Analysis Based Feature Monitoring.
- import_features_analysis¶
The config for ImportFeatures Analysis Based Feature Monitoring.
- numerical_threshold_config¶
Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type ([Feature.ValueType][google.cloud.aiplatform.v1.Feature.ValueType]) DOUBLE or INT64).
- categorical_threshold_config¶
Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type ([Feature.ValueType][google.cloud.aiplatform.v1.Feature.ValueType]) BOOL or STRING).
- class ImportFeaturesAnalysis(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration of the Featurestore’s ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every [ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues] operation.
- state¶
Whether to enable / disable / inherite default hebavior for import features analysis.
- anomaly_detection_baseline¶
The baseline used to do anomaly detection for the statistics generated by import features analysis.
- class Baseline(value)[source]¶
Bases:
Enum
Defines the baseline to do anomaly detection for feature values imported by each [ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues] operation.
- Values:
- BASELINE_UNSPECIFIED (0):
Should not be used.
- LATEST_STATS (1):
Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS (2):
Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS (3):
Use the statistics generated by the previous import features analysis if exists.
- class State(value)[source]¶
Bases:
Enum
The state defines whether to enable ImportFeature analysis.
- Values:
- STATE_UNSPECIFIED (0):
Should not be used.
- DEFAULT (1):
The default behavior of whether to enable the monitoring. EntityType-level config: disabled. Feature-level config: inherited from the configuration of EntityType this Feature belongs to.
- ENABLED (2):
Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it. Feature-level config: enables import features analysis regardless of the EntityType-level config.
- DISABLED (3):
Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it. Feature-level config: disables import features analysis regardless of the EntityType-level config.
- class SnapshotAnalysis(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration of the Featurestore’s Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.
- disabled¶
The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoring_interval for Features under it. Feature-level config: disabled = true indicates disabled regardless of the EntityType-level config; unset monitoring_interval indicates going with EntityType-level config; otherwise run snapshot analysis monitoring with monitoring_interval regardless of the EntityType-level config. Explicitly Disable the snapshot analysis based monitoring.
- Type:
- monitoring_interval_days¶
Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days.
- Type:
- class ThresholdConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for Featurestore Monitoring threshold.
- value¶
Specify a threshold value that can trigger the alert. 1. For categorical feature, the distribution
distance is calculated by L-inifinity norm.
- For numerical feature, the distribution
distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature.
This field is a member of oneof
threshold
.- Type:
- class google.cloud.aiplatform_v1.types.FetchFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1.FeatureOnlineStoreService.FetchFeatureValues]. All the features under the requested feature view will be returned.
- feature_view¶
Required. FeatureView resource format
projects/{project}/locations/{location}/featureOnlineStores/{featureOnlineStore}/featureViews/{featureView}
- Type:
- data_key¶
Optional. The request key to fetch feature values for.
- data_format¶
Optional. Response data format. If not set, [FeatureViewDataFormat.KEY_VALUE][google.cloud.aiplatform.v1.FeatureViewDataFormat.KEY_VALUE] will be used.
- class google.cloud.aiplatform_v1.types.FetchFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1.FeatureOnlineStoreService.FetchFeatureValues]
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- data_key¶
The data key associated with this response. Will only be populated for [FeatureOnlineStoreService.StreamingFetchFeatureValues][] RPCs.
- class google.cloud.aiplatform_v1.types.FileData(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
URI based data.
- class google.cloud.aiplatform_v1.types.FilterSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as ‘-’ (the minus sign).
Supported only for unstructured Datasets.
- training_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to train the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- validation_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to validate the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- test_filter¶
Required. A filter on DataItems of the Dataset. DataItems that match this filter are used to test the Model. A filter with same syntax as the one used in [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems] may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order.
- Type:
- class google.cloud.aiplatform_v1.types.FindNeighborsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The request message for [MatchService.FindNeighbors][google.cloud.aiplatform.v1.MatchService.FindNeighbors].
- index_endpoint¶
Required. The name of the index endpoint. Format:
projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}
- Type:
- deployed_index_id¶
The ID of the DeployedIndex that will serve the request. This request is sent to a specific IndexEndpoint, as per the IndexEndpoint.network. That IndexEndpoint also has IndexEndpoint.deployed_indexes, and each such index has a DeployedIndex.id field. The value of the field below must equal one of the DeployedIndex.id fields of the IndexEndpoint that is being called for this request.
- Type:
- queries¶
The list of queries.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FindNeighborsRequest.Query]
- return_full_datapoint¶
If set to true, the full datapoints (including all vector values and restricts) of the nearest neighbors are returned. Note that returning full datapoint will significantly increase the latency and cost of the query.
- Type:
- class Query(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A query to find a number of the nearest neighbors (most similar vectors) of a vector.
- rrf¶
Optional. Represents RRF algorithm that combines search results.
This field is a member of oneof
ranking
.
- datapoint¶
Required. The datapoint/vector whose nearest neighbors should be searched for.
- neighbor_count¶
The number of nearest neighbors to be retrieved from database for each query. If not set, will use the default from the service configuration (https://cloud.google.com/vertex-ai/docs/matching-engine/configuring-indexes#nearest-neighbor-search-config).
- Type:
- per_crowding_attribute_neighbor_count¶
Crowding is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k’ of the k neighbors returned have the same value of crowding_attribute. It’s used for improving result diversity. This field is the maximum number of matches with the same crowding tag.
- Type:
- approximate_neighbor_count¶
The number of neighbors to find via approximate search before exact reordering is performed. If not set, the default value from scam config is used; if set, this value must be > 0.
- Type:
- fraction_leaf_nodes_to_search_override¶
The fraction of the number of leaves to search, set at query time allows user to tune search performance. This value increase result in both search accuracy and latency increase. The value should be between 0.0 and 1.0. If not set or set to 0.0, query uses the default value specified in NearestNeighborSearchConfig.TreeAHConfig.fraction_leaf_nodes_to_search.
- Type:
- class google.cloud.aiplatform_v1.types.FindNeighborsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The response message for [MatchService.FindNeighbors][google.cloud.aiplatform.v1.MatchService.FindNeighbors].
- nearest_neighbors¶
The nearest neighbors of the query datapoints.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FindNeighborsResponse.NearestNeighbors]
- class NearestNeighbors(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Nearest neighbors for one query.
- neighbors¶
All its neighbors.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FindNeighborsResponse.Neighbor]
- class Neighbor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A neighbor of the query vector.
- datapoint¶
The datapoint of the neighbor. Note that full datapoints are returned only when “return_full_datapoint” is set to true. Otherwise, only the “datapoint_id” and “crowding_tag” fields are populated.
- class google.cloud.aiplatform_v1.types.FluencyInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for fluency metric.
- metric_spec¶
Required. Spec for fluency score metric.
- instance¶
Required. Fluency instance.
- class google.cloud.aiplatform_v1.types.FluencyInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fluency instance.
- class google.cloud.aiplatform_v1.types.FluencyResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fluency result.
- class google.cloud.aiplatform_v1.types.FluencySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fluency score metric.
- class google.cloud.aiplatform_v1.types.FractionSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns the input data to training, validation, and test sets as per the given fractions. Any of
training_fraction
,validation_fraction
andtest_fraction
may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.- training_fraction¶
The fraction of the input data that is to be used to train the Model.
- Type:
- validation_fraction¶
The fraction of the input data that is to be used to validate the Model.
- Type:
- class google.cloud.aiplatform_v1.types.FulfillmentInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for fulfillment metric.
- metric_spec¶
Required. Spec for fulfillment score metric.
- instance¶
Required. Fulfillment instance.
- class google.cloud.aiplatform_v1.types.FulfillmentInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fulfillment instance.
- class google.cloud.aiplatform_v1.types.FulfillmentResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fulfillment result.
- class google.cloud.aiplatform_v1.types.FulfillmentSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for fulfillment metric.
- class google.cloud.aiplatform_v1.types.FunctionCall(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values.
- args¶
Optional. Required. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
- class google.cloud.aiplatform_v1.types.FunctionCallingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Function calling config.
- mode¶
Optional. Function calling mode.
- allowed_function_names¶
Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
- Type:
MutableSequence[str]
- class Mode(value)[source]¶
Bases:
Enum
Function calling mode.
- Values:
- MODE_UNSPECIFIED (0):
Unspecified function calling mode. This value should not be used.
- AUTO (1):
Default model behavior, model decides to predict either a function call or a natural language response.
- ANY (2):
Model is constrained to always predicting a function call only. If “allowed_function_names” are set, the predicted function call will be limited to any one of “allowed_function_names”, else the predicted function call will be any one of the provided “function_declarations”.
- NONE (3):
Model will not predict any function call. Model behavior is same as when not passing any function declarations.
- class google.cloud.aiplatform_v1.types.FunctionDeclaration(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Structured representation of a function declaration as defined by the OpenAPI 3.0 specification. Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a
Tool
by the model and executed by the client.- name¶
Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
- Type:
- description¶
Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
- Type:
- parameters¶
Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties:
param1:
type: STRING
param2:
type: INTEGER
required:
param1
- response¶
Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
- class google.cloud.aiplatform_v1.types.FunctionResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction.
- name¶
Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
- Type:
- response¶
Required. The function response in JSON object format. Use “output” key to specify function output and “error” key to specify error details (if any). If “output” and “error” keys are not specified, then whole “response” is treated as function output.
- class google.cloud.aiplatform_v1.types.GcsDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Google Cloud Storage location where the output is to be written to.
- class google.cloud.aiplatform_v1.types.GcsSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Google Cloud Storage location for the input content.
- uris¶
Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames.
- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.GenerateContentRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.GenerateContent].
- model¶
Required. The fully qualified name of the publisher model or tuned model endpoint to use.
Publisher model format:
projects/{project}/locations/{location}/publishers/*/models/*
Tuned model endpoint format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- contents¶
Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Content]
- system_instruction¶
Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
This field is a member of oneof
_system_instruction
.
- tools¶
Optional. A list of
Tools
the model may use to generate the next response.A
Tool
is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tool]
- tool_config¶
Optional. Tool config. This config is shared for all tools provided in the request.
- labels¶
Optional. The labels with user-defined metadata for the request. It is used for billing and reporting only.
Label keys and values can be no longer than 63 characters (Unicode codepoints) and can only contain lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter.
- safety_settings¶
Optional. Per request settings for blocking unsafe content. Enforced on GenerateContentResponse.candidates.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SafetySetting]
- generation_config¶
Optional. Generation config.
- class google.cloud.aiplatform_v1.types.GenerateContentResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.GenerateContent].
- candidates¶
Output only. Generated candidates.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Candidate]
- prompt_feedback¶
Output only. Content filter results for a prompt sent in the request. Note: Sent only in the first stream chunk. Only happens when no candidates were generated due to content violations.
- usage_metadata¶
Usage metadata about the response(s).
- class PromptFeedback(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Content filter results for a prompt sent in the request.
- block_reason¶
Output only. Blocked reason.
- safety_ratings¶
Output only. Safety ratings.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SafetyRating]
- class BlockedReason(value)[source]¶
Bases:
Enum
Blocked reason enumeration.
- Values:
- BLOCKED_REASON_UNSPECIFIED (0):
Unspecified blocked reason.
- SAFETY (1):
Candidates blocked due to safety.
- OTHER (2):
Candidates blocked due to other reason.
- BLOCKLIST (3):
Candidates blocked due to the terms which are included from the terminology blocklist.
- PROHIBITED_CONTENT (4):
Candidates blocked due to prohibited content.
- class UsageMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Usage metadata about response(s).
- prompt_token_count¶
Number of tokens in the request. When
cached_content
is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.- Type:
- class google.cloud.aiplatform_v1.types.GenerationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Generation config.
- temperature¶
Optional. Controls the randomness of predictions.
This field is a member of oneof
_temperature
.- Type:
- top_p¶
Optional. If specified, nucleus sampling will be used.
This field is a member of oneof
_top_p
.- Type:
- top_k¶
Optional. If specified, top-k sampling will be used.
This field is a member of oneof
_top_k
.- Type:
- candidate_count¶
Optional. Number of candidates to generate.
This field is a member of oneof
_candidate_count
.- Type:
- max_output_tokens¶
Optional. The maximum number of output tokens to generate per message.
This field is a member of oneof
_max_output_tokens
.- Type:
- response_logprobs¶
Optional. If true, export the logprobs results in response.
This field is a member of oneof
_response_logprobs
.- Type:
- presence_penalty¶
Optional. Positive penalties.
This field is a member of oneof
_presence_penalty
.- Type:
- frequency_penalty¶
Optional. Frequency penalties.
This field is a member of oneof
_frequency_penalty
.- Type:
- response_mime_type¶
Optional. Output response mimetype of the generated candidate text. Supported mimetype:
text/plain
: (default) Text output.application/json
: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
- Type:
- response_schema¶
Optional. The
Schema
object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an OpenAPI 3.0 schema object. If set, a compatible response_mime_type must also be set. Compatible mimetypes:application/json
: Schema for JSON response.This field is a member of oneof
_response_schema
.
- class RoutingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The configuration for routing the request to a specific model.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class AutoRoutingMode(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference.
- model_routing_preference¶
The model routing preference.
This field is a member of oneof
_model_routing_preference
.
- class ModelRoutingPreference(value)[source]¶
Bases:
Enum
The model routing preference.
- Values:
- UNKNOWN (0):
Unspecified model routing preference.
- PRIORITIZE_QUALITY (1):
Prefer higher quality over low cost.
- BALANCED (2):
Balanced model routing preference.
- PRIORITIZE_COST (3):
Prefer lower cost over higher quality.
- class google.cloud.aiplatform_v1.types.GenericOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Generic Metadata shared by all operations.
- partial_failures¶
Output only. Partial failures encountered. E.g. single files that couldn’t be read. This field should never exceed 20 entries. Status details field will contain standard Google Cloud error details.
- Type:
MutableSequence[google.rpc.status_pb2.Status]
- create_time¶
Output only. Time when the operation was created.
- update_time¶
Output only. Time when the operation was updated for the last time. If the operation has finished (successfully or not), this is the finish time.
- class google.cloud.aiplatform_v1.types.GenieSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains information about the source of the models generated from Generative AI Studio.
- class google.cloud.aiplatform_v1.types.GetAnnotationSpecRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1.DatasetService.GetAnnotationSpec].
- name¶
Required. The name of the AnnotationSpec resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}/annotationSpecs/{annotation_spec}
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.GetArtifactRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1.MetadataService.GetArtifact].
- class google.cloud.aiplatform_v1.types.GetBatchPredictionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetBatchPredictionJob][google.cloud.aiplatform.v1.JobService.GetBatchPredictionJob].
- class google.cloud.aiplatform_v1.types.GetContextRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1.MetadataService.GetContext].
- class google.cloud.aiplatform_v1.types.GetCustomJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetCustomJob][google.cloud.aiplatform.v1.JobService.GetCustomJob].
- class google.cloud.aiplatform_v1.types.GetDataLabelingJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetDataLabelingJob][google.cloud.aiplatform.v1.JobService.GetDataLabelingJob].
- class google.cloud.aiplatform_v1.types.GetDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1.DatasetService.GetDataset]. Next ID: 4
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.GetDatasetVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.GetDatasetVersion][google.cloud.aiplatform.v1.DatasetService.GetDatasetVersion]. Next ID: 4
- name¶
Required. The resource name of the Dataset version to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.GetDeploymentResourcePoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for GetDeploymentResourcePool method.
- class google.cloud.aiplatform_v1.types.GetEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.GetEndpoint][google.cloud.aiplatform.v1.EndpointService.GetEndpoint]
- class google.cloud.aiplatform_v1.types.GetEntityTypeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.GetEntityType][google.cloud.aiplatform.v1.FeaturestoreService.GetEntityType].
- class google.cloud.aiplatform_v1.types.GetExecutionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1.MetadataService.GetExecution].
- class google.cloud.aiplatform_v1.types.GetFeatureGroupRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureRegistryService.GetFeatureGroup][google.cloud.aiplatform.v1.FeatureRegistryService.GetFeatureGroup].
- class google.cloud.aiplatform_v1.types.GetFeatureOnlineStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.GetFeatureOnlineStore][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.GetFeatureOnlineStore].
- class google.cloud.aiplatform_v1.types.GetFeatureRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.GetFeature][google.cloud.aiplatform.v1.FeaturestoreService.GetFeature]. Request message for [FeatureRegistryService.GetFeature][google.cloud.aiplatform.v1.FeatureRegistryService.GetFeature].
- class google.cloud.aiplatform_v1.types.GetFeatureViewRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.GetFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.GetFeatureView].
- class google.cloud.aiplatform_v1.types.GetFeatureViewSyncRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.GetFeatureViewSync][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.GetFeatureViewSync].
- class google.cloud.aiplatform_v1.types.GetFeaturestoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.GetFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.GetFeaturestore].
- class google.cloud.aiplatform_v1.types.GetHyperparameterTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.GetHyperparameterTuningJob].
- class google.cloud.aiplatform_v1.types.GetIndexEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.GetIndexEndpoint]
- class google.cloud.aiplatform_v1.types.GetIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.GetIndex][google.cloud.aiplatform.v1.IndexService.GetIndex]
- class google.cloud.aiplatform_v1.types.GetMetadataSchemaRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1.MetadataService.GetMetadataSchema].
- class google.cloud.aiplatform_v1.types.GetMetadataStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1.MetadataService.GetMetadataStore].
- class google.cloud.aiplatform_v1.types.GetModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.GetModelDeploymentMonitoringJob].
- class google.cloud.aiplatform_v1.types.GetModelEvaluationRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.GetModelEvaluation][google.cloud.aiplatform.v1.ModelService.GetModelEvaluation].
- class google.cloud.aiplatform_v1.types.GetModelEvaluationSliceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.GetModelEvaluationSlice][google.cloud.aiplatform.v1.ModelService.GetModelEvaluationSlice].
- class google.cloud.aiplatform_v1.types.GetModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.GetModel][google.cloud.aiplatform.v1.ModelService.GetModel].
- name¶
Required. The name of the Model resource. Format:
projects/{project}/locations/{location}/models/{model}
In order to retrieve a specific version of the model, also provide the version ID or version alias. Example:
projects/{project}/locations/{location}/models/{model}@2
orprojects/{project}/locations/{location}/models/{model}@golden
If no version ID or alias is specified, the “default” version will be returned. The “default” version alias is created for the first version of the model, and can be moved to other versions later on. There will be exactly one default version.- Type:
- class google.cloud.aiplatform_v1.types.GetNasJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetNasJob][google.cloud.aiplatform.v1.JobService.GetNasJob].
- class google.cloud.aiplatform_v1.types.GetNasTrialDetailRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.GetNasTrialDetail][google.cloud.aiplatform.v1.JobService.GetNasTrialDetail].
- class google.cloud.aiplatform_v1.types.GetNotebookExecutionJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.GetNotebookExecutionJob]
- view¶
Optional. The NotebookExecutionJob view. Defaults to BASIC.
- class google.cloud.aiplatform_v1.types.GetNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.GetNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.GetNotebookRuntime]
- class google.cloud.aiplatform_v1.types.GetNotebookRuntimeTemplateRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.GetNotebookRuntimeTemplate][google.cloud.aiplatform.v1.NotebookService.GetNotebookRuntimeTemplate]
- class google.cloud.aiplatform_v1.types.GetPersistentResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PersistentResourceService.GetPersistentResource][google.cloud.aiplatform.v1.PersistentResourceService.GetPersistentResource].
- class google.cloud.aiplatform_v1.types.GetPipelineJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.GetPipelineJob][google.cloud.aiplatform.v1.PipelineService.GetPipelineJob].
- class google.cloud.aiplatform_v1.types.GetPublisherModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelGardenService.GetPublisherModel][google.cloud.aiplatform.v1.ModelGardenService.GetPublisherModel]
- name¶
Required. The name of the PublisherModel resource. Format:
publishers/{publisher}/models/{publisher_model}
- Type:
- language_code¶
Optional. The IETF BCP-47 language code representing the language in which the publisher model’s text information should be written in.
- Type:
- view¶
Optional. PublisherModel view specifying which fields to read.
- is_hugging_face_model¶
Optional. Boolean indicates whether the requested model is a Hugging Face model.
- Type:
- class google.cloud.aiplatform_v1.types.GetScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.GetSchedule][google.cloud.aiplatform.v1.ScheduleService.GetSchedule].
- class google.cloud.aiplatform_v1.types.GetSpecialistPoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [SpecialistPoolService.GetSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.GetSpecialistPool].
- class google.cloud.aiplatform_v1.types.GetStudyRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.GetStudy][google.cloud.aiplatform.v1.VizierService.GetStudy].
- class google.cloud.aiplatform_v1.types.GetTensorboardExperimentRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardExperiment].
- class google.cloud.aiplatform_v1.types.GetTensorboardRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.GetTensorboard][google.cloud.aiplatform.v1.TensorboardService.GetTensorboard].
- class google.cloud.aiplatform_v1.types.GetTensorboardRunRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardRun].
- class google.cloud.aiplatform_v1.types.GetTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardTimeSeries].
- class google.cloud.aiplatform_v1.types.GetTrainingPipelineRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.GetTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.GetTrainingPipeline].
- class google.cloud.aiplatform_v1.types.GetTrialRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.GetTrial][google.cloud.aiplatform.v1.VizierService.GetTrial].
- class google.cloud.aiplatform_v1.types.GetTuningJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [GenAiTuningService.GetTuningJob][google.cloud.aiplatform.v1.GenAiTuningService.GetTuningJob].
- class google.cloud.aiplatform_v1.types.GoogleSearchRetrieval(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool to retrieve public web data for grounding, powered by Google.
- dynamic_retrieval_config¶
Specifies the dynamic retrieval configuration for the given source.
- class google.cloud.aiplatform_v1.types.GroundednessInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for groundedness metric.
- metric_spec¶
Required. Spec for groundedness metric.
- instance¶
Required. Groundedness instance.
- class google.cloud.aiplatform_v1.types.GroundednessInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for groundedness instance.
- class google.cloud.aiplatform_v1.types.GroundednessResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for groundedness result.
- class google.cloud.aiplatform_v1.types.GroundednessSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for groundedness metric.
- class google.cloud.aiplatform_v1.types.GroundingChunk(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Grounding chunk.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- retrieved_context¶
Grounding chunk from context retrieved by the retrieval tools.
This field is a member of oneof
chunk_type
.
- class google.cloud.aiplatform_v1.types.GroundingMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata returned to client when grounding is enabled.
- web_search_queries¶
Optional. Web search queries for the following-up web search.
- Type:
MutableSequence[str]
- search_entry_point¶
Optional. Google search entry for the following-up web searches.
This field is a member of oneof
_search_entry_point
.
- grounding_chunks¶
List of supporting references retrieved from specified grounding source.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.GroundingChunk]
- grounding_supports¶
Optional. List of grounding support.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.GroundingSupport]
- class google.cloud.aiplatform_v1.types.GroundingSupport(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Grounding support.
- class google.cloud.aiplatform_v1.types.HarmCategory(value)[source]¶
Bases:
Enum
Harm categories that will block the content.
- Values:
- HARM_CATEGORY_UNSPECIFIED (0):
The harm category is unspecified.
- HARM_CATEGORY_HATE_SPEECH (1):
The harm category is hate speech.
- HARM_CATEGORY_DANGEROUS_CONTENT (2):
The harm category is dangerous content.
- HARM_CATEGORY_HARASSMENT (3):
The harm category is harassment.
- HARM_CATEGORY_SEXUALLY_EXPLICIT (4):
The harm category is sexually explicit content.
- HARM_CATEGORY_CIVIC_INTEGRITY (5):
The harm category is civic integrity.
- class google.cloud.aiplatform_v1.types.HyperparameterTuningJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
- display_name¶
Required. The display name of the HyperparameterTuningJob. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- study_spec¶
Required. Study configuration of the HyperparameterTuningJob.
- max_failed_trial_count¶
The number of failed Trials that need to be seen before failing the HyperparameterTuningJob.
If set to 0, Vertex AI decides how many Trials must fail before the whole job fails.
- Type:
- trial_job_spec¶
Required. The spec of a trial job. The same spec applies to the CustomJobs created in all the trials.
- trials¶
Output only. Trials of the HyperparameterTuningJob.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial]
- state¶
Output only. The detailed state of the job.
- create_time¶
Output only. Time when the HyperparameterTuningJob was created.
- start_time¶
Output only. Time when the HyperparameterTuningJob for the first time entered the
JOB_STATE_RUNNING
state.
- end_time¶
Output only. Time when the HyperparameterTuningJob entered any of the following states:
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
,JOB_STATE_CANCELLED
.
- update_time¶
Output only. Time when the HyperparameterTuningJob was most recently updated.
- error¶
Output only. Only populated when job’s state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.
- Type:
google.rpc.status_pb2.Status
- labels¶
The labels with user-defined metadata to organize HyperparameterTuningJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- encryption_spec¶
Customer-managed encryption key options for a HyperparameterTuningJob. If this is set, then all resources created by the HyperparameterTuningJob will be encrypted with the provided encryption key.
- class google.cloud.aiplatform_v1.types.IdMatcher(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Matcher for Features of an EntityType by Feature ID.
- class google.cloud.aiplatform_v1.types.ImportDataConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.
- gcs_source¶
The Google Cloud Storage location for the input content.
This field is a member of oneof
source
.
- data_item_labels¶
Labels that will be applied to newly imported DataItems. If an identical DataItem as one being imported already exists in the Dataset, then these labels will be appended to these of the already existing one, and if labels with identical key is imported before, the old label value will be overwritten. If two DataItems are identical in the same import data operation, the labels will be combined and if key collision happens in this case, one of the values will be picked randomly. Two DataItems are considered identical if their content bytes are identical (e.g. image bytes or pdf bytes). These labels will be overridden by Annotation labels specified inside index file referenced by [import_schema_uri][google.cloud.aiplatform.v1.ImportDataConfig.import_schema_uri], e.g. jsonl file.
- annotation_labels¶
Labels that will be applied to newly imported Annotations. If two Annotations are identical, one of them will be deduped. Two Annotations are considered identical if their [payload][google.cloud.aiplatform.v1.Annotation.payload], [payload_schema_uri][google.cloud.aiplatform.v1.Annotation.payload_schema_uri] and all of their [labels][google.cloud.aiplatform.v1.Annotation.labels] are the same. These labels will be overridden by Annotation labels specified inside index file referenced by [import_schema_uri][google.cloud.aiplatform.v1.ImportDataConfig.import_schema_uri], e.g. jsonl file.
- import_schema_uri¶
Required. Points to a YAML file stored on Google Cloud Storage describing the import format. Validation will be done against the schema. The schema is defined as an OpenAPI 3.0.2 Schema Object.
- Type:
- class google.cloud.aiplatform_v1.types.ImportDataOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.ImportDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
- name¶
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- import_configs¶
Required. The desired input locations. The contents of all input locations will be imported in one batch.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ImportDataConfig]
- class google.cloud.aiplatform_v1.types.ImportDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
- class google.cloud.aiplatform_v1.types.ImportFeatureValuesOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform import Feature values.
- generic_metadata¶
Operation metadata for Featurestore import Feature values.
- imported_feature_value_count¶
Number of Feature values that have been imported by the operation.
- Type:
- invalid_row_count¶
The number of rows in input source that weren’t imported due to either
Not having any featureValues.
Having a null entityId.
Having a null timestamp.
Not being parsable (applicable for CSV sources).
- Type:
- timestamp_outside_retention_rows_count¶
The number rows that weren’t ingested due to having timestamps outside the retention boundary.
- Type:
- class google.cloud.aiplatform_v1.types.ImportFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- feature_time_field¶
Source column that holds the Feature timestamp for all Feature values in each entity.
This field is a member of oneof
feature_time_source
.- Type:
- feature_time¶
Single Feature timestamp for all entities being imported. The timestamp must not have higher than millisecond precision.
This field is a member of oneof
feature_time_source
.
- entity_type¶
Required. The resource name of the EntityType grouping the Features for which values are being imported. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType}
- Type:
- entity_id_field¶
Source column that holds entity IDs. If not provided, entity IDs are extracted from the column named entity_id.
- Type:
- feature_specs¶
Required. Specifications defining which Feature values to import from the entity. The request fails if no feature_specs are provided, and having multiple feature_specs for one Feature is not allowed.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ImportFeatureValuesRequest.FeatureSpec]
- disable_online_serving¶
If set, data will not be imported for online serving. This is typically used for backfilling, where Feature generation timestamps are not in the timestamp range needed for online serving.
- Type:
- worker_count¶
Specifies the number of workers that are used to write data to the Featurestore. Consider the online serving capacity that you require to achieve the desired import throughput without interfering with online serving. The value must be positive, and less than or equal to 100. If not set, defaults to using 1 worker. The low count ensures minimal impact on online serving performance.
- Type:
- class google.cloud.aiplatform_v1.types.ImportFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
- imported_feature_value_count¶
Number of Feature values that have been imported by the operation.
- Type:
- invalid_row_count¶
The number of rows in input source that weren’t imported due to either
Not having any featureValues.
Having a null entityId.
Having a null timestamp.
Not being parsable (applicable for CSV sources).
- Type:
- class google.cloud.aiplatform_v1.types.ImportModelEvaluationRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ImportModelEvaluation][google.cloud.aiplatform.v1.ModelService.ImportModelEvaluation]
- parent¶
Required. The name of the parent model resource. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- model_evaluation¶
Required. Model evaluation resource to be imported.
- class google.cloud.aiplatform_v1.types.Index(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
- display_name¶
Required. The display name of the Index. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- metadata_schema_uri¶
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Index, that is specific to it. Unset if the Index does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- metadata¶
An additional information about the Index; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1.Index.metadata_schema_uri].
- deployed_indexes¶
Output only. The pointers to DeployedIndexes created from this Index. An Index can be only deleted if all its DeployedIndexes had been undeployed first.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedIndexRef]
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Indexes. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- create_time¶
Output only. Timestamp when this Index was created.
- update_time¶
Output only. Timestamp when this Index was most recently updated. This also includes any update to the contents of the Index. Note that Operations working on this Index may have their [Operations.metadata.generic_metadata.update_time] [google.cloud.aiplatform.v1.GenericOperationMetadata.update_time] a little after the value of this timestamp, yet that does not mean their results are not already reflected in the Index. Result of any successfully completed Operation on the Index is reflected in it.
- index_stats¶
Output only. Stats of the index resource.
- index_update_method¶
Immutable. The update method to use with this Index. If not set, BATCH_UPDATE will be used by default.
- encryption_spec¶
Immutable. Customer-managed encryption key spec for an Index. If set, this Index and all sub-resources of this Index will be secured by this key.
- class IndexUpdateMethod(value)[source]¶
Bases:
Enum
The update method of an Index.
- Values:
- INDEX_UPDATE_METHOD_UNSPECIFIED (0):
Should not be used.
- BATCH_UPDATE (1):
BatchUpdate: user can call UpdateIndex with files on Cloud Storage of Datapoints to update.
- STREAM_UPDATE (2):
StreamUpdate: user can call UpsertDatapoints/DeleteDatapoints to update the Index and the updates will be applied in corresponding DeployedIndexes in nearly real-time.
- class google.cloud.aiplatform_v1.types.IndexDatapoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A datapoint of Index.
- feature_vector¶
Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
- Type:
MutableSequence[float]
- sparse_embedding¶
Optional. Feature embedding vector for sparse index.
- restricts¶
Optional. List of Restrict of the datapoint, used to perform “restricted searches” where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See:
https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.IndexDatapoint.Restriction]
- numeric_restricts¶
Optional. List of Restrict of the datapoint, used to perform “restricted searches” where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.IndexDatapoint.NumericRestriction]
- crowding_tag¶
Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
- class CrowdingTag(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k’ of the k neighbors returned have the same value of crowding_attribute.
- crowding_attribute¶
The attribute value used for crowding. The maximum number of neighbors to return per crowding attribute value (per_crowding_attribute_num_neighbors) is configured per-query. This field is ignored if per_crowding_attribute_num_neighbors is larger than the total number of neighbors to return for a given query.
- Type:
- class NumericRestriction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
This field allows restricts to be based on numeric comparisons rather than categorical tokens.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- op¶
This MUST be specified for queries and must NOT be specified for datapoints.
- class Operator(value)[source]¶
Bases:
Enum
Which comparison operator to use. Should be specified for queries only; specifying this for a datapoint is an error.
Datapoints for which Operator is true relative to the query’s Value field will be allowlisted.
- Values:
- OPERATOR_UNSPECIFIED (0):
Default value of the enum.
- LESS (1):
Datapoints are eligible iff their value is < the query’s.
- LESS_EQUAL (2):
Datapoints are eligible iff their value is <= the query’s.
- EQUAL (3):
Datapoints are eligible iff their value is == the query’s.
- GREATER_EQUAL (4):
Datapoints are eligible iff their value is >= the query’s.
- GREATER (5):
Datapoints are eligible iff their value is > the query’s.
- NOT_EQUAL (6):
Datapoints are eligible iff their value is != the query’s.
- class Restriction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).
- class google.cloud.aiplatform_v1.types.IndexEndpoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.
- display_name¶
Required. The display name of the IndexEndpoint. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- deployed_indexes¶
Output only. The indexes deployed in this endpoint.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedIndex]
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your IndexEndpoints. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- create_time¶
Output only. Timestamp when this IndexEndpoint was created.
- update_time¶
Output only. Timestamp when this IndexEndpoint was last updated. This timestamp is not updated when the endpoint’s DeployedIndexes are updated, e.g. due to updates of the original Indexes they are the deployments of.
- network¶
Optional. The full name of the Google Compute Engine network to which the IndexEndpoint should be peered.
Private services access must already be configured for the network. If left unspecified, the Endpoint is not peered with any network.
[network][google.cloud.aiplatform.v1.IndexEndpoint.network] and [private_service_connect_config][google.cloud.aiplatform.v1.IndexEndpoint.private_service_connect_config] are mutually exclusive.
Format:
projects/{project}/global/networks/{network}
. Where {project} is a project number, as in ‘12345’, and {network} is network name.- Type:
- enable_private_service_connect¶
Optional. Deprecated: If true, expose the IndexEndpoint via private service connect.
Only one of the fields, [network][google.cloud.aiplatform.v1.IndexEndpoint.network] or [enable_private_service_connect][google.cloud.aiplatform.v1.IndexEndpoint.enable_private_service_connect], can be set.
- Type:
- private_service_connect_config¶
Optional. Configuration for private service connect.
[network][google.cloud.aiplatform.v1.IndexEndpoint.network] and [private_service_connect_config][google.cloud.aiplatform.v1.IndexEndpoint.private_service_connect_config] are mutually exclusive.
- public_endpoint_enabled¶
Optional. If true, the deployed index will be accessible through public endpoint.
- Type:
- public_endpoint_domain_name¶
Output only. If [public_endpoint_enabled][google.cloud.aiplatform.v1.IndexEndpoint.public_endpoint_enabled] is true, this field will be populated with the domain name to use for this index endpoint.
- Type:
- encryption_spec¶
Immutable. Customer-managed encryption key spec for an IndexEndpoint. If set, this IndexEndpoint and all sub-resources of this IndexEndpoint will be secured by this key.
- class google.cloud.aiplatform_v1.types.IndexPrivateEndpoints(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.
- service_attachment¶
Output only. The name of the service attachment resource. Populated if private service connect is enabled.
- Type:
- psc_automated_endpoints¶
Output only. PscAutomatedEndpoints is populated if private service connect is enabled if PscAutomatedConfig is set.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PscAutomatedEndpoints]
- class google.cloud.aiplatform_v1.types.IndexStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Stats of the Index.
- class google.cloud.aiplatform_v1.types.InputDataConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- fraction_split¶
Split based on fractions defining the size of each set.
This field is a member of oneof
split
.
- filter_split¶
Split based on the provided filters for each set.
This field is a member of oneof
split
.
- predefined_split¶
Supported only for tabular Datasets.
Split based on a predefined key.
This field is a member of oneof
split
.
- timestamp_split¶
Supported only for tabular Datasets.
Split based on the timestamp of the input data pieces.
This field is a member of oneof
split
.
- stratified_split¶
Supported only for tabular Datasets.
Split based on the distribution of the specified column.
This field is a member of oneof
split
.
- gcs_destination¶
The Cloud Storage location where the training data is to be written to. In the given directory a new directory is created with name:
dataset-<dataset-id>-<annotation-type>-<timestamp-of-training-call>
where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All training input data is written into that directory.The Vertex AI environment variables representing Cloud Storage data URIs are represented in the Cloud Storage wildcard format to support sharded data. e.g.: “gs://…/training-*.jsonl”
AIP_DATA_FORMAT = “jsonl” for non-tabular data, “csv” for tabular data
AIP_TRAINING_DATA_URI = “gcs_destination/dataset—/training-*.${AIP_DATA_FORMAT}”
AIP_VALIDATION_DATA_URI = “gcs_destination/dataset—/validation-*.${AIP_DATA_FORMAT}”
AIP_TEST_DATA_URI = “gcs_destination/dataset—/test-*.${AIP_DATA_FORMAT}”.
This field is a member of oneof
destination
.
- bigquery_destination¶
Only applicable to custom training with tabular Dataset with BigQuery source.
The BigQuery project location where the training data is to be written to. In the given project a new dataset is created with name
dataset_<dataset-id>_<annotation-type>_<timestamp-of-training-call>
where timestamp is in YYYY_MM_DDThh_mm_ss_sssZ format. All training input data is written into that dataset. In the dataset three tables are created,training
,validation
andtest
.AIP_DATA_FORMAT = “bigquery”.
AIP_TRAINING_DATA_URI = “bigquery_destination.dataset_**.training”
AIP_VALIDATION_DATA_URI = “bigquery_destination.dataset_**.validation”
AIP_TEST_DATA_URI = “bigquery_destination.dataset_**.test”.
This field is a member of oneof
destination
.
- dataset_id¶
Required. The ID of the Dataset in the same Project and Location which data will be used to train the Model. The Dataset must use schema compatible with Model being trained, and what is compatible should be described in the used TrainingPipeline’s [training_task_definition] [google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]. For tabular Datasets, all their data is exported to training, to pick and choose from.
- Type:
- annotations_filter¶
Applicable only to Datasets that have DataItems and Annotations.
A filter on Annotations of the Dataset. Only Annotations that both match this filter and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on (for the auto-assigned that role is decided by Vertex AI). A filter with same syntax as the one used in [ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations] may be used, but note here it filters across all Annotations of the Dataset, and not just within a single DataItem.
- Type:
- annotation_schema_uri¶
Applicable only to custom training with Datasets that have DataItems and Annotations.
Cloud Storage URI that points to a YAML file describing the annotation schema. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/annotation/ , note that the chosen schema must be consistent with [metadata][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri] of the Dataset specified by [dataset_id][google.cloud.aiplatform.v1.InputDataConfig.dataset_id].
Only Annotations that both match this schema and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on.
When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1.InputDataConfig.annotations_filter], the Annotations used for training are filtered by both [annotations_filter][google.cloud.aiplatform.v1.InputDataConfig.annotations_filter] and [annotation_schema_uri][google.cloud.aiplatform.v1.InputDataConfig.annotation_schema_uri].
- Type:
- saved_query_id¶
Only applicable to Datasets that have SavedQueries.
The ID of a SavedQuery (annotation set) under the Dataset specified by [dataset_id][google.cloud.aiplatform.v1.InputDataConfig.dataset_id] used for filtering Annotations for training.
Only Annotations that are associated with this SavedQuery are used in respectively training. When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1.InputDataConfig.annotations_filter], the Annotations used for training are filtered by both [saved_query_id][google.cloud.aiplatform.v1.InputDataConfig.saved_query_id] and [annotations_filter][google.cloud.aiplatform.v1.InputDataConfig.annotations_filter].
Only one of [saved_query_id][google.cloud.aiplatform.v1.InputDataConfig.saved_query_id] and [annotation_schema_uri][google.cloud.aiplatform.v1.InputDataConfig.annotation_schema_uri] should be specified as both of them represent the same thing: problem type.
- Type:
- class google.cloud.aiplatform_v1.types.Int64Array(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of int64 values.
- class google.cloud.aiplatform_v1.types.IntegratedGradientsAttribution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An attribution method that computes the Aumann-Shapley value taking advantage of the model’s fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
- step_count¶
Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range.
Valid range of its value is [1, 100], inclusively.
- Type:
- smooth_grad_config¶
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
- blur_baseline_config¶
Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here:
- class google.cloud.aiplatform_v1.types.JobState(value)[source]¶
Bases:
Enum
Describes the state of a job.
- Values:
- JOB_STATE_UNSPECIFIED (0):
The job state is unspecified.
- JOB_STATE_QUEUED (1):
The job has been just created or resumed and processing has not yet begun.
- JOB_STATE_PENDING (2):
The service is preparing to run the job.
- JOB_STATE_RUNNING (3):
The job is in progress.
- JOB_STATE_SUCCEEDED (4):
The job completed successfully.
- JOB_STATE_FAILED (5):
The job failed.
- JOB_STATE_CANCELLING (6):
The job is being cancelled. From this state the job may only go to either
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
orJOB_STATE_CANCELLED
.- JOB_STATE_CANCELLED (7):
The job has been cancelled.
- JOB_STATE_PAUSED (8):
The job has been stopped, and can be resumed.
- JOB_STATE_EXPIRED (9):
The job has expired.
- JOB_STATE_UPDATING (10):
The job is being updated. Only jobs in the
RUNNING
state can be updated. After updating, the job goes back to theRUNNING
state.- JOB_STATE_PARTIALLY_SUCCEEDED (11):
The job is partially succeeded, some results may be missing due to errors.
- class google.cloud.aiplatform_v1.types.LargeModelReference(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains information about the Large Model.
- name¶
Required. The unique name of the large Foundation or pre-built model. Like “chat-bison”, “text-bison”. Or model name with version ID, like “chat-bison@001”, “text-bison@005”, etc.
- Type:
- class google.cloud.aiplatform_v1.types.LineageSubgraph(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- artifacts¶
The Artifact nodes in the subgraph.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Artifact]
- executions¶
The Execution nodes in the subgraph.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Execution]
- events¶
The Event edges between Artifacts and Executions in the subgraph.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Event]
- class google.cloud.aiplatform_v1.types.ListAnnotationsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
- parent¶
Required. The resource name of the DataItem to list Annotations from. Format:
projects/{project}/locations/{location}/datasets/{dataset}/dataItems/{data_item}
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListAnnotationsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
- annotations¶
A list of Annotations that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Annotation]
- class google.cloud.aiplatform_v1.types.ListArtifactsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
- parent¶
Required. The MetadataStore whose Artifacts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- page_size¶
The maximum number of Artifacts to return. The service may return fewer. Must be in range 1-1000, inclusive. Defaults to 100.
- Type:
- page_token¶
A page token, received from a previous [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts] call. Provide this to retrieve the subsequent page.
When paginating, all other provided parameters must match the call that provided the page token. (Otherwise the request will fail with INVALID_ARGUMENT error.)
- Type:
- filter¶
Filter specifying the boolean condition for the Artifacts to satisfy in order to be part of the result set. The syntax to define filter query is based on https://google.aip.dev/160. The supported set of filters include the following:
Attribute filtering: For example:
display_name = "test"
. Supported fields include:name
,display_name
,uri
,state
,schema_title
,create_time
, andupdate_time
. Time fields, such ascreate_time
andupdate_time
, require values specified in RFC-3339 format. For example:create_time = "2020-11-19T11:30:00-04:00"
Metadata field: To filter on metadata fields use traversal operation as follows:
metadata.<field_name>.<type_value>
. For example:metadata.field_1.number_value = 10.0
In case the field name contains special characters (such as colon), one can embed it inside double quote. For example:metadata."field:1".number_value = 10.0
Context based filtering: To filter Artifacts based on the contexts to which they belong, use the function operator with the full resource name
in_context(<context-name>)
. For example:in_context("projects/<project_number>/locations/<location>/metadataStores/<metadatastore_name>/contexts/<context-id>")
Each of the above supported filter types can be combined together using logical operators (
AND
&OR
). Maximum nested expression depth allowed is 5.For example:
display_name = "test" AND metadata.field1.bool_value = true
.- Type:
- order_by¶
How the list of messages is ordered. Specify the values to order by and an ordering operation. The default sorting order is ascending. To specify descending order for a field, users append a ” desc” suffix; for example: “foo desc, bar”. Subfields are specified with a
.
character, such as foo.bar. see https://google.aip.dev/132#ordering for more details.- Type:
- class google.cloud.aiplatform_v1.types.ListArtifactsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
- artifacts¶
The Artifacts retrieved from the MetadataStore.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Artifact]
- class google.cloud.aiplatform_v1.types.ListBatchPredictionJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs].
- parent¶
Required. The resource name of the Location to list the BatchPredictionJobs from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.model_display_name
supports=
,!=
comparisons.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListBatchPredictionJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListBatchPredictionJobsResponse.next_page_token] of the previous [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListBatchPredictionJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs]
- batch_prediction_jobs¶
List of BatchPredictionJobs in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.BatchPredictionJob]
- class google.cloud.aiplatform_v1.types.ListContextsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts]
- parent¶
Required. The MetadataStore whose Contexts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- page_size¶
The maximum number of Contexts to return. The service may return fewer. Must be in range 1-1000, inclusive. Defaults to 100.
- Type:
- page_token¶
A page token, received from a previous [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts] call. Provide this to retrieve the subsequent page.
When paginating, all other provided parameters must match the call that provided the page token. (Otherwise the request will fail with INVALID_ARGUMENT error.)
- Type:
- filter¶
Filter specifying the boolean condition for the Contexts to satisfy in order to be part of the result set. The syntax to define filter query is based on https://google.aip.dev/160. Following are the supported set of filters:
Attribute filtering: For example:
display_name = "test"
. Supported fields include:name
,display_name
,schema_title
,create_time
, andupdate_time
. Time fields, such ascreate_time
andupdate_time
, require values specified in RFC-3339 format. For example:create_time = "2020-11-19T11:30:00-04:00"
.Metadata field: To filter on metadata fields use traversal operation as follows:
metadata.<field_name>.<type_value>
. For example:metadata.field_1.number_value = 10.0
. In case the field name contains special characters (such as colon), one can embed it inside double quote. For example:metadata."field:1".number_value = 10.0
Parent Child filtering: To filter Contexts based on parent-child relationship use the HAS operator as follows:
parent_contexts: "projects/<project_number>/locations/<location>/metadataStores/<metadatastore_name>/contexts/<context_id>" child_contexts: "projects/<project_number>/locations/<location>/metadataStores/<metadatastore_name>/contexts/<context_id>"
Each of the above supported filters can be combined together using logical operators (
AND
&OR
). Maximum nested expression depth allowed is 5.For example:
display_name = "test" AND metadata.field1.bool_value = true
.- Type:
- order_by¶
How the list of messages is ordered. Specify the values to order by and an ordering operation. The default sorting order is ascending. To specify descending order for a field, users append a ” desc” suffix; for example: “foo desc, bar”. Subfields are specified with a
.
character, such as foo.bar. see https://google.aip.dev/132#ordering for more details.- Type:
- class google.cloud.aiplatform_v1.types.ListContextsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts].
- contexts¶
The Contexts retrieved from the MetadataStore.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Context]
- class google.cloud.aiplatform_v1.types.ListCustomJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1.JobService.ListCustomJobs].
- parent¶
Required. The resource name of the Location to list the CustomJobs from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListCustomJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListCustomJobsResponse.next_page_token] of the previous [JobService.ListCustomJobs][google.cloud.aiplatform.v1.JobService.ListCustomJobs] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListCustomJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1.JobService.ListCustomJobs]
- custom_jobs¶
List of CustomJobs in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.CustomJob]
- class google.cloud.aiplatform_v1.types.ListDataItemsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
- parent¶
Required. The resource name of the Dataset to list DataItems from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListDataItemsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
- data_items¶
A list of DataItems that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DataItem]
- class google.cloud.aiplatform_v1.types.ListDataLabelingJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1.JobService.ListDataLabelingJobs].
- parent¶
Required. The parent of the DataLabelingJob. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- read_mask¶
Mask specifying which fields to read. FieldMask represents a set of symbolic field paths. For example, the mask can be
paths: "name"
. The “name” here is a field in DataLabelingJob. If this field is not set, all fields of the DataLabelingJob are returned.
- class google.cloud.aiplatform_v1.types.ListDataLabelingJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1.JobService.ListDataLabelingJobs].
- data_labeling_jobs¶
A list of DataLabelingJobs that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DataLabelingJob]
- class google.cloud.aiplatform_v1.types.ListDatasetVersionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
- parent¶
Required. The resource name of the Dataset to list DatasetVersions from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- read_mask¶
Optional. Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
- dataset_versions¶
A list of DatasetVersions that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DatasetVersion]
- class google.cloud.aiplatform_v1.types.ListDatasetsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
- parent¶
Required. The name of the Dataset’s parent resource. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
display_name
: supports = and !=metadata_schema_uri
: supports = and !=labels
supports general map functions that is:labels.key=value
- key:value equality`labels.key:* or labels:key - key existence
A key including a space must be quoted.
labels."a key"
.
Some examples:
displayName="myDisplayName"
labels.myKey="myValue"
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListDatasetsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
- datasets¶
A list of Datasets that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Dataset]
- class google.cloud.aiplatform_v1.types.ListDeploymentResourcePoolsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for ListDeploymentResourcePools method.
- parent¶
Required. The parent Location which owns this collection of DeploymentResourcePools. Format:
projects/{project}/locations/{location}
- Type:
- page_size¶
The maximum number of DeploymentResourcePools to return. The service may return fewer than this value.
- Type:
- class google.cloud.aiplatform_v1.types.ListDeploymentResourcePoolsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for ListDeploymentResourcePools method.
- deployment_resource_pools¶
The DeploymentResourcePools from the specified location.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeploymentResourcePool]
- class google.cloud.aiplatform_v1.types.ListEndpointsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1.EndpointService.ListEndpoints].
- parent¶
Required. The resource name of the Location from which to list the Endpoints. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
endpoint
supports=
and!=
.endpoint
represents the Endpoint ID, i.e. the last segment of the Endpoint’s [resource name][google.cloud.aiplatform.v1.Endpoint.name].display_name
supports=
and!=
.labels
supports general map functions that is:labels.key=value
- key:value equalitylabels.key:*
orlabels:key
- key existenceA key including a space must be quoted.
labels."a key"
.
base_model_name
only supports=
.
Some examples:
endpoint=1
displayName="myDisplayName"
labels.myKey="myValue"
baseModelName="text-bison"
- Type:
- page_token¶
Optional. The standard list page token. Typically obtained via [ListEndpointsResponse.next_page_token][google.cloud.aiplatform.v1.ListEndpointsResponse.next_page_token] of the previous [EndpointService.ListEndpoints][google.cloud.aiplatform.v1.EndpointService.ListEndpoints] call.
- Type:
- read_mask¶
Optional. Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListEndpointsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1.EndpointService.ListEndpoints].
- endpoints¶
List of Endpoints in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Endpoint]
- class google.cloud.aiplatform_v1.types.ListEntityTypesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes].
- parent¶
Required. The resource name of the Featurestore to list EntityTypes. Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
- Type:
- filter¶
Lists the EntityTypes that match the filter expression. The following filters are supported:
create_time
: Supports=
,!=
,<
,>
,>=
, and<=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,>=
, and<=
comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality as well as key presence.
Examples:
create_time > \"2020-01-31T15:30:00.000000Z\" OR update_time > \"2020-01-31T15:30:00.000000Z\"
–> EntityTypes created or updated after 2020-01-31T15:30:00.000000Z.labels.active = yes AND labels.env = prod
–> EntityTypes having both (active: yes) and (env: prod) labels.labels.env: *
–> Any EntityType which has a label with ‘env’ as the key.
- Type:
- page_size¶
The maximum number of EntityTypes to return. The service may return fewer than this value. If unspecified, at most 1000 EntityTypes will be returned. The maximum value is 1000; any value greater than 1000 will be coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes] must match the call that provided the page token.
- Type:
- order_by¶
A comma-separated list of fields to order by, sorted in ascending order. Use “desc” after a field name for descending.
Supported fields:
entity_type_id
create_time
update_time
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListEntityTypesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes].
- entity_types¶
The EntityTypes matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EntityType]
- class google.cloud.aiplatform_v1.types.ListExecutionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
- parent¶
Required. The MetadataStore whose Executions should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- page_size¶
The maximum number of Executions to return. The service may return fewer. Must be in range 1-1000, inclusive. Defaults to 100.
- Type:
- page_token¶
A page token, received from a previous [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions] call. Provide this to retrieve the subsequent page.
When paginating, all other provided parameters must match the call that provided the page token. (Otherwise the request will fail with an INVALID_ARGUMENT error.)
- Type:
- filter¶
Filter specifying the boolean condition for the Executions to satisfy in order to be part of the result set. The syntax to define filter query is based on https://google.aip.dev/160. Following are the supported set of filters:
Attribute filtering: For example:
display_name = "test"
. Supported fields include:name
,display_name
,state
,schema_title
,create_time
, andupdate_time
. Time fields, such ascreate_time
andupdate_time
, require values specified in RFC-3339 format. For example:create_time = "2020-11-19T11:30:00-04:00"
.Metadata field: To filter on metadata fields use traversal operation as follows:
metadata.<field_name>.<type_value>
For example:metadata.field_1.number_value = 10.0
In case the field name contains special characters (such as colon), one can embed it inside double quote. For example:metadata."field:1".number_value = 10.0
Context based filtering: To filter Executions based on the contexts to which they belong use the function operator with the full resource name:
in_context(<context-name>)
. For example:in_context("projects/<project_number>/locations/<location>/metadataStores/<metadatastore_name>/contexts/<context-id>")
Each of the above supported filters can be combined together using logical operators (
AND
&OR
). Maximum nested expression depth allowed is 5.For example:
display_name = "test" AND metadata.field1.bool_value = true
.- Type:
- order_by¶
How the list of messages is ordered. Specify the values to order by and an ordering operation. The default sorting order is ascending. To specify descending order for a field, users append a ” desc” suffix; for example: “foo desc, bar”. Subfields are specified with a
.
character, such as foo.bar. see https://google.aip.dev/132#ordering for more details.- Type:
- class google.cloud.aiplatform_v1.types.ListExecutionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
- executions¶
The Executions retrieved from the MetadataStore.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Execution]
- class google.cloud.aiplatform_v1.types.ListFeatureGroupsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatureGroups].
- parent¶
Required. The resource name of the Location to list FeatureGroups. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Lists the FeatureGroups that match the filter expression. The following fields are supported:
create_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality and key presence.
Examples:
create_time > "2020-01-01" OR update_time > "2020-01-01"
FeatureGroups created or updated after 2020-01-01.labels.env = "prod"
FeatureGroups with label “env” set to “prod”.
- Type:
- page_size¶
The maximum number of FeatureGroups to return. The service may return fewer than this value. If unspecified, at most 100 FeatureGroups will be returned. The maximum value is 100; any value greater than 100 will be coerced to 100.
- Type:
- page_token¶
A page token, received from a previous [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatureGroups] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatureGroups] must match the call that provided the page token.
- Type:
- class google.cloud.aiplatform_v1.types.ListFeatureGroupsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatureGroups].
- feature_groups¶
The FeatureGroups matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureGroup]
- class google.cloud.aiplatform_v1.types.ListFeatureOnlineStoresRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
- parent¶
Required. The resource name of the Location to list FeatureOnlineStores. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Lists the FeatureOnlineStores that match the filter expression. The following fields are supported:
create_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality and key presence.
Examples:
create_time > "2020-01-01" OR update_time > "2020-01-01"
FeatureOnlineStores created or updated after 2020-01-01.labels.env = "prod"
FeatureOnlineStores with label “env” set to “prod”.
- Type:
- page_size¶
The maximum number of FeatureOnlineStores to return. The service may return fewer than this value. If unspecified, at most 100 FeatureOnlineStores will be returned. The maximum value is 100; any value greater than 100 will be coerced to 100.
- Type:
- page_token¶
A page token, received from a previous [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores] must match the call that provided the page token.
- Type:
- class google.cloud.aiplatform_v1.types.ListFeatureOnlineStoresResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
- feature_online_stores¶
The FeatureOnlineStores matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureOnlineStore]
- class google.cloud.aiplatform_v1.types.ListFeatureViewSyncsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
- parent¶
Required. The resource name of the FeatureView to list FeatureViewSyncs. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}
- Type:
- filter¶
Lists the FeatureViewSyncs that match the filter expression. The following filters are supported:
create_time
: Supports=
,!=
,<
,>
,>=
, and<=
comparisons. Values must be in RFC 3339 format.
Examples:
create_time > \"2020-01-31T15:30:00.000000Z\"
–> FeatureViewSyncs created after 2020-01-31T15:30:00.000000Z.
- Type:
- page_size¶
The maximum number of FeatureViewSyncs to return. The service may return fewer than this value. If unspecified, at most 1000 FeatureViewSyncs will be returned. The maximum value is 1000; any value greater than 1000 will be coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs] must match the call that provided the page token.
- Type:
- class google.cloud.aiplatform_v1.types.ListFeatureViewSyncsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
- feature_view_syncs¶
The FeatureViewSyncs matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureViewSync]
- class google.cloud.aiplatform_v1.types.ListFeatureViewsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViews].
- parent¶
Required. The resource name of the FeatureOnlineStore to list FeatureViews. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}
- Type:
- filter¶
Lists the FeatureViews that match the filter expression. The following filters are supported:
create_time
: Supports=
,!=
,<
,>
,>=
, and<=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,>=
, and<=
comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality as well as key presence.
Examples:
create_time > \"2020-01-31T15:30:00.000000Z\" OR update_time > \"2020-01-31T15:30:00.000000Z\"
–> FeatureViews created or updated after 2020-01-31T15:30:00.000000Z.labels.active = yes AND labels.env = prod
–> FeatureViews having both (active: yes) and (env: prod) labels.labels.env: *
–> Any FeatureView which has a label with ‘env’ as the key.
- Type:
- page_size¶
The maximum number of FeatureViews to return. The service may return fewer than this value. If unspecified, at most 1000 FeatureViews will be returned. The maximum value is 1000; any value greater than 1000 will be coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViews] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViews] must match the call that provided the page token.
- Type:
- class google.cloud.aiplatform_v1.types.ListFeatureViewsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.ListFeatureViews].
- feature_views¶
The FeatureViews matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureView]
- class google.cloud.aiplatform_v1.types.ListFeaturesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures]. Request message for [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatures].
- parent¶
Required. The resource name of the Location to list Features. Format for entity_type as parent:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
Format for feature_group as parent:projects/{project}/locations/{location}/featureGroups/{feature_group}
- Type:
- filter¶
Lists the Features that match the filter expression. The following filters are supported:
value_type
: Supports = and != comparisons.create_time
: Supports =, !=, <, >, >=, and <= comparisons. Values must be in RFC 3339 format.update_time
: Supports =, !=, <, >, >=, and <= comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality as well as key presence.
Examples:
value_type = DOUBLE
–> Features whose type is DOUBLE.create_time > \"2020-01-31T15:30:00.000000Z\" OR update_time > \"2020-01-31T15:30:00.000000Z\"
–> EntityTypes created or updated after 2020-01-31T15:30:00.000000Z.labels.active = yes AND labels.env = prod
–> Features having both (active: yes) and (env: prod) labels.labels.env: *
–> Any Feature which has a label with ‘env’ as the key.
- Type:
- page_size¶
The maximum number of Features to return. The service may return fewer than this value. If unspecified, at most 1000 Features will be returned. The maximum value is 1000; any value greater than 1000 will be coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures] call or [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatures] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures] or [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatures] must match the call that provided the page token.
- Type:
- order_by¶
A comma-separated list of fields to order by, sorted in ascending order. Use “desc” after a field name for descending. Supported fields:
feature_id
value_type
(Not supported for FeatureRegistry Feature)create_time
update_time
- Type:
- read_mask¶
Mask specifying which fields to read.
- latest_stats_count¶
Only applicable for Vertex AI Feature Store (Legacy). If set, return the most recent [ListFeaturesRequest.latest_stats_count][google.cloud.aiplatform.v1.ListFeaturesRequest.latest_stats_count] of stats for each Feature in response. Valid value is [0, 10]. If number of stats exists < [ListFeaturesRequest.latest_stats_count][google.cloud.aiplatform.v1.ListFeaturesRequest.latest_stats_count], return all existing stats.
- Type:
- class google.cloud.aiplatform_v1.types.ListFeaturesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures]. Response message for [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1.FeatureRegistryService.ListFeatures].
- features¶
The Features matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Feature]
- class google.cloud.aiplatform_v1.types.ListFeaturestoresRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores].
- parent¶
Required. The resource name of the Location to list Featurestores. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Lists the featurestores that match the filter expression. The following fields are supported:
create_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.online_serving_config.fixed_node_count
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons.labels
: Supports key-value equality and key presence.
Examples:
create_time > "2020-01-01" OR update_time > "2020-01-01"
Featurestores created or updated after 2020-01-01.labels.env = "prod"
Featurestores with label “env” set to “prod”.
- Type:
- page_size¶
The maximum number of Featurestores to return. The service may return fewer than this value. If unspecified, at most 100 Featurestores will be returned. The maximum value is 100; any value greater than 100 will be coerced to 100.
- Type:
- page_token¶
A page token, received from a previous [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores] must match the call that provided the page token.
- Type:
- order_by¶
A comma-separated list of fields to order by, sorted in ascending order. Use “desc” after a field name for descending. Supported Fields:
create_time
update_time
online_serving_config.fixed_node_count
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListFeaturestoresResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores].
- featurestores¶
The Featurestores matching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Featurestore]
- class google.cloud.aiplatform_v1.types.ListHyperparameterTuningJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs].
- parent¶
Required. The resource name of the Location to list the HyperparameterTuningJobs from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListHyperparameterTuningJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListHyperparameterTuningJobsResponse.next_page_token] of the previous [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListHyperparameterTuningJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs]
- hyperparameter_tuning_jobs¶
List of HyperparameterTuningJobs in the requested page. [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials] of the jobs will be not be returned.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.HyperparameterTuningJob]
- class google.cloud.aiplatform_v1.types.ListIndexEndpointsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1.IndexEndpointService.ListIndexEndpoints].
- parent¶
Required. The resource name of the Location from which to list the IndexEndpoints. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
index_endpoint
supports = and !=.index_endpoint
represents the IndexEndpoint ID, ie. the last segment of the IndexEndpoint’s [resourcename][google.cloud.aiplatform.v1.IndexEndpoint.name].display_name
supports =, != and regex() (uses re2 syntax)labels
supports general map functions that is:labels.key=value
- key:value equalitylabels.key:* or labels:key - key existence A key including a space must be quoted.
labels.”a key”`.
Some examples:
index_endpoint="1"
display_name="myDisplayName"
`regex(display_name, “^A”) -> The display name starts with an A.
labels.myKey="myValue"
- Type:
- page_token¶
Optional. The standard list page token. Typically obtained via [ListIndexEndpointsResponse.next_page_token][google.cloud.aiplatform.v1.ListIndexEndpointsResponse.next_page_token] of the previous [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1.IndexEndpointService.ListIndexEndpoints] call.
- Type:
- read_mask¶
Optional. Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListIndexEndpointsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1.IndexEndpointService.ListIndexEndpoints].
- index_endpoints¶
List of IndexEndpoints in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.IndexEndpoint]
- class google.cloud.aiplatform_v1.types.ListIndexesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.ListIndexes][google.cloud.aiplatform.v1.IndexService.ListIndexes].
- parent¶
Required. The resource name of the Location from which to list the Indexes. Format:
projects/{project}/locations/{location}
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListIndexesResponse.next_page_token][google.cloud.aiplatform.v1.ListIndexesResponse.next_page_token] of the previous [IndexService.ListIndexes][google.cloud.aiplatform.v1.IndexService.ListIndexes] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListIndexesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexService.ListIndexes][google.cloud.aiplatform.v1.IndexService.ListIndexes].
- indexes¶
List of indexes in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Index]
- class google.cloud.aiplatform_v1.types.ListMetadataSchemasRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
- parent¶
Required. The MetadataStore whose MetadataSchemas should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- page_size¶
The maximum number of MetadataSchemas to return. The service may return fewer. Must be in range 1-1000, inclusive. Defaults to 100.
- Type:
- page_token¶
A page token, received from a previous [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas] call. Provide this to retrieve the next page.
When paginating, all other provided parameters must match the call that provided the page token. (Otherwise the request will fail with INVALID_ARGUMENT error.)
- Type:
- class google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
- metadata_schemas¶
The MetadataSchemas found for the MetadataStore.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.MetadataSchema]
- class google.cloud.aiplatform_v1.types.ListMetadataStoresRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
- parent¶
Required. The Location whose MetadataStores should be listed. Format:
projects/{project}/locations/{location}
- Type:
- page_size¶
The maximum number of Metadata Stores to return. The service may return fewer. Must be in range 1-1000, inclusive. Defaults to 100.
- Type:
- page_token¶
A page token, received from a previous [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores] call. Provide this to retrieve the subsequent page.
When paginating, all other provided parameters must match the call that provided the page token. (Otherwise the request will fail with INVALID_ARGUMENT error.)
- Type:
- class google.cloud.aiplatform_v1.types.ListMetadataStoresResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
- metadata_stores¶
The MetadataStores found for the Location.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.MetadataStore]
- class google.cloud.aiplatform_v1.types.ListModelDeploymentMonitoringJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1.JobService.ListModelDeploymentMonitoringJobs].
- parent¶
Required. The parent of the ModelDeploymentMonitoringJob. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- read_mask¶
Mask specifying which fields to read
- class google.cloud.aiplatform_v1.types.ListModelDeploymentMonitoringJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1.JobService.ListModelDeploymentMonitoringJobs].
- model_deployment_monitoring_jobs¶
A list of ModelDeploymentMonitoringJobs that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringJob]
- class google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices].
- parent¶
Required. The resource name of the ModelEvaluation to list the ModelEvaluationSlices from. Format:
projects/{project}/locations/{location}/models/{model}/evaluations/{evaluation}
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListModelEvaluationSlicesResponse.next_page_token][google.cloud.aiplatform.v1.ListModelEvaluationSlicesResponse.next_page_token] of the previous [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices].
- model_evaluation_slices¶
List of ModelEvaluations in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelEvaluationSlice]
- class google.cloud.aiplatform_v1.types.ListModelEvaluationsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1.ModelService.ListModelEvaluations].
- parent¶
Required. The resource name of the Model to list the ModelEvaluations from. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListModelEvaluationsResponse.next_page_token][google.cloud.aiplatform.v1.ListModelEvaluationsResponse.next_page_token] of the previous [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1.ModelService.ListModelEvaluations] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1.ModelService.ListModelEvaluations].
- model_evaluations¶
List of ModelEvaluations in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelEvaluation]
- class google.cloud.aiplatform_v1.types.ListModelVersionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1.ModelService.ListModelVersions].
- page_token¶
The standard list page token. Typically obtained via [next_page_token][google.cloud.aiplatform.v1.ListModelVersionsResponse.next_page_token] of the previous [ListModelVersions][google.cloud.aiplatform.v1.ModelService.ListModelVersions] call.
- Type:
- filter¶
An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
labels
supports general map functions that is:labels.key=value
- key:value equality`labels.key:* or labels:key - key existence
A key including a space must be quoted.
labels."a key"
.
Some examples:
labels.myKey="myValue"
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListModelVersionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1.ModelService.ListModelVersions]
- models¶
List of Model versions in the requested page. In the returned Model name field, version ID instead of regvision tag will be included.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Model]
- class google.cloud.aiplatform_v1.types.ListModelsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.ListModels][google.cloud.aiplatform.v1.ModelService.ListModels].
- parent¶
Required. The resource name of the Location to list the Models from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
model
supports = and !=.model
represents the Model ID, i.e. the last segment of the Model’s [resource name][google.cloud.aiplatform.v1.Model.name].display_name
supports = and !=labels
supports general map functions that is:labels.key=value
- key:value equality`labels.key:* or labels:key - key existence
A key including a space must be quoted.
labels."a key"
.
base_model_name
only supports =
Some examples:
model=1234
displayName="myDisplayName"
labels.myKey="myValue"
baseModelName="text-bison"
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListModelsResponse.next_page_token][google.cloud.aiplatform.v1.ListModelsResponse.next_page_token] of the previous [ModelService.ListModels][google.cloud.aiplatform.v1.ModelService.ListModels] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListModelsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ModelService.ListModels][google.cloud.aiplatform.v1.ModelService.ListModels]
- models¶
List of Models in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Model]
- class google.cloud.aiplatform_v1.types.ListNasJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListNasJobs][google.cloud.aiplatform.v1.JobService.ListNasJobs].
- parent¶
Required. The resource name of the Location to list the NasJobs from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"
state!="JOB_STATE_FAILED" OR display_name="my_job"
NOT display_name="my_job"
create_time>"2021-05-18T00:00:00Z"
labels.keyA=valueA
labels.keyB:*
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListNasJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListNasJobsResponse.next_page_token] of the previous [JobService.ListNasJobs][google.cloud.aiplatform.v1.JobService.ListNasJobs] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListNasJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListNasJobs][google.cloud.aiplatform.v1.JobService.ListNasJobs]
- nas_jobs¶
List of NasJobs in the requested page. [NasJob.nas_job_output][google.cloud.aiplatform.v1.NasJob.nas_job_output] of the jobs will not be returned.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NasJob]
- class google.cloud.aiplatform_v1.types.ListNasTrialDetailsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1.JobService.ListNasTrialDetails].
- parent¶
Required. The name of the NasJob resource. Format:
projects/{project}/locations/{location}/nasJobs/{nas_job}
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListNasTrialDetailsResponse.next_page_token][google.cloud.aiplatform.v1.ListNasTrialDetailsResponse.next_page_token] of the previous [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1.JobService.ListNasTrialDetails] call.
- Type:
- class google.cloud.aiplatform_v1.types.ListNasTrialDetailsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1.JobService.ListNasTrialDetails]
- nas_trial_details¶
List of top NasTrials in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NasTrialDetail]
- class google.cloud.aiplatform_v1.types.ListNotebookExecutionJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.ListNotebookExecutionJobs]
- parent¶
Required. The resource name of the Location from which to list the NotebookExecutionJobs. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
notebookExecutionJob
supports = and !=.notebookExecutionJob
represents the NotebookExecutionJob ID.displayName
supports = and != and regex.schedule
supports = and != and regex.
Some examples:
notebookExecutionJob="123"
notebookExecutionJob="my-execution-job"
displayName="myDisplayName"
anddisplayName=~"myDisplayNameRegex"
- Type:
- page_token¶
Optional. The standard list page token. Typically obtained via [ListNotebookExecutionJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListNotebookExecutionJobsResponse.next_page_token] of the previous [NotebookService.ListNotebookExecutionJobs][google.cloud.aiplatform.v1.NotebookService.ListNotebookExecutionJobs] call.
- Type:
- order_by¶
Optional. A comma-separated list of fields to order by, sorted in ascending order. Use “desc” after a field name for descending. Supported fields:
display_name
create_time
update_time
Example:
display_name, create_time desc
.- Type:
- view¶
Optional. The NotebookExecutionJob view. Defaults to BASIC.
- class google.cloud.aiplatform_v1.types.ListNotebookExecutionJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.CreateNotebookExecutionJob]
- notebook_execution_jobs¶
List of NotebookExecutionJobs in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NotebookExecutionJob]
- class google.cloud.aiplatform_v1.types.ListNotebookRuntimeTemplatesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimeTemplates].
- parent¶
Required. The resource name of the Location from which to list the NotebookRuntimeTemplates. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
notebookRuntimeTemplate
supports = and !=.notebookRuntimeTemplate
represents the NotebookRuntimeTemplate ID, i.e. the last segment of the NotebookRuntimeTemplate’s [resource name] [google.cloud.aiplatform.v1.NotebookRuntimeTemplate.name].display_name
supports = and !=labels
supports general map functions that is:labels.key=value
- key:value equality`labels.key:* or labels:key - key existence
A key including a space must be quoted.
labels."a key"
.
notebookRuntimeType
supports = and !=. notebookRuntimeType enum: [USER_DEFINED, ONE_CLICK].
Some examples:
notebookRuntimeTemplate=notebookRuntimeTemplate123
displayName="myDisplayName"
labels.myKey="myValue"
notebookRuntimeType=USER_DEFINED
- Type:
- page_token¶
Optional. The standard list page token. Typically obtained via [ListNotebookRuntimeTemplatesResponse.next_page_token][google.cloud.aiplatform.v1.ListNotebookRuntimeTemplatesResponse.next_page_token] of the previous [NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimeTemplates] call.
- Type:
- read_mask¶
Optional. Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListNotebookRuntimeTemplatesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimeTemplates].
- notebook_runtime_templates¶
List of NotebookRuntimeTemplates in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NotebookRuntimeTemplate]
- class google.cloud.aiplatform_v1.types.ListNotebookRuntimesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimes].
- parent¶
Required. The resource name of the Location from which to list the NotebookRuntimes. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
notebookRuntime
supports = and !=.notebookRuntime
represents the NotebookRuntime ID, i.e. the last segment of the NotebookRuntime’s [resource name] [google.cloud.aiplatform.v1.NotebookRuntime.name].displayName
supports = and != and regex.notebookRuntimeTemplate
supports = and !=.notebookRuntimeTemplate
represents the NotebookRuntimeTemplate ID, i.e. the last segment of the NotebookRuntimeTemplate’s [resource name] [google.cloud.aiplatform.v1.NotebookRuntimeTemplate.name].healthState
supports = and !=. healthState enum: [HEALTHY, UNHEALTHY, HEALTH_STATE_UNSPECIFIED].runtimeState
supports = and !=. runtimeState enum: [RUNTIME_STATE_UNSPECIFIED, RUNNING, BEING_STARTED, BEING_STOPPED, STOPPED, BEING_UPGRADED, ERROR, INVALID].runtimeUser
supports = and !=.API version is UI only:
uiState
supports = and !=. uiState enum: [UI_RESOURCE_STATE_UNSPECIFIED, UI_RESOURCE_STATE_BEING_CREATED, UI_RESOURCE_STATE_ACTIVE, UI_RESOURCE_STATE_BEING_DELETED, UI_RESOURCE_STATE_CREATION_FAILED].notebookRuntimeType
supports = and !=. notebookRuntimeType enum: [USER_DEFINED, ONE_CLICK].
Some examples:
notebookRuntime="notebookRuntime123"
displayName="myDisplayName"
anddisplayName=~"myDisplayNameRegex"
notebookRuntimeTemplate="notebookRuntimeTemplate321"
healthState=HEALTHY
runtimeState=RUNNING
runtimeUser="test@google.com"
uiState=UI_RESOURCE_STATE_BEING_DELETED
notebookRuntimeType=USER_DEFINED
- Type:
- page_token¶
Optional. The standard list page token. Typically obtained via [ListNotebookRuntimesResponse.next_page_token][google.cloud.aiplatform.v1.ListNotebookRuntimesResponse.next_page_token] of the previous [NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimes] call.
- Type:
- read_mask¶
Optional. Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListNotebookRuntimesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1.NotebookService.ListNotebookRuntimes].
- notebook_runtimes¶
List of NotebookRuntimes in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NotebookRuntime]
- class google.cloud.aiplatform_v1.types.ListOptimalTrialsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1.VizierService.ListOptimalTrials].
- class google.cloud.aiplatform_v1.types.ListOptimalTrialsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1.VizierService.ListOptimalTrials].
- optimal_trials¶
The pareto-optimal Trials for multiple objective Study or the optimal trial for single objective Study. The definition of pareto-optimal can be checked in wiki page. https://en.wikipedia.org/wiki/Pareto_efficiency
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial]
- class google.cloud.aiplatform_v1.types.ListPersistentResourcesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PersistentResourceService.ListPersistentResources][google.cloud.aiplatform.v1.PersistentResourceService.ListPersistentResources].
- parent¶
Required. The resource name of the Location to list the PersistentResources from. Format:
projects/{project}/locations/{location}
- Type:
- class google.cloud.aiplatform_v1.types.ListPersistentResourcesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PersistentResourceService.ListPersistentResources][google.cloud.aiplatform.v1.PersistentResourceService.ListPersistentResources]
- persistent_resources¶
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PersistentResource]
- class google.cloud.aiplatform_v1.types.ListPipelineJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1.PipelineService.ListPipelineJobs].
- parent¶
Required. The resource name of the Location to list the PipelineJobs from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Lists the PipelineJobs that match the filter expression. The following fields are supported:
pipeline_name
: Supports=
and!=
comparisons.display_name
: Supports=
,!=
comparisons, and:
wildcard.pipeline_job_user_id
: Supports=
,!=
comparisons, and:
wildcard. for example, can check if pipeline’s display_name contains step by doing display_name:”step”state
: Supports=
and!=
comparisons.create_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.update_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.end_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.labels
: Supports key-value equality and key presence.template_uri
: Supports=
,!=
comparisons, and:
wildcard.template_metadata.version
: Supports=
,!=
comparisons, and:
wildcard.
Filter expressions can be combined together using logical operators (
AND
&OR
). For example:pipeline_name="test" AND create_time>"2020-05-18T13:30:00Z"
.The syntax to define filter expression is based on https://google.aip.dev/160.
Examples:
create_time>"2021-05-18T00:00:00Z" OR update_time>"2020-05-18T00:00:00Z"
PipelineJobs created or updated after 2020-05-18 00:00:00 UTC.labels.env = "prod"
PipelineJobs with label “env” set to “prod”.
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListPipelineJobsResponse.next_page_token][google.cloud.aiplatform.v1.ListPipelineJobsResponse.next_page_token] of the previous [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1.PipelineService.ListPipelineJobs] call.
- Type:
- order_by¶
A comma-separated list of fields to order by. The default sort order is in ascending order. Use “desc” after a field name for descending. You can have multiple order_by fields provided e.g. “create_time desc, end_time”, “end_time, start_time, update_time” For example, using “create_time desc, end_time” will order results by create time in descending order, and if there are multiple jobs having the same create time, order them by the end time in ascending order. if order_by is not specified, it will order by default order is create time in descending order. Supported fields:
create_time
update_time
end_time
start_time
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListPipelineJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1.PipelineService.ListPipelineJobs]
- pipeline_jobs¶
List of PipelineJobs in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PipelineJob]
- class google.cloud.aiplatform_v1.types.ListSavedQueriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
- parent¶
Required. The resource name of the Dataset to list SavedQueries from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListSavedQueriesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
- saved_queries¶
A list of SavedQueries that match the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SavedQuery]
- class google.cloud.aiplatform_v1.types.ListSchedulesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.ListSchedules][google.cloud.aiplatform.v1.ScheduleService.ListSchedules].
- parent¶
Required. The resource name of the Location to list the Schedules from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
Lists the Schedules that match the filter expression. The following fields are supported:
display_name
: Supports=
,!=
comparisons, and:
wildcard.state
: Supports=
and!=
comparisons.request
: Supports existence of the <request_type> check. (e.g.create_pipeline_job_request:*
–> Schedule has create_pipeline_job_request).create_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.start_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.end_time
: Supports=
,!=
,<
,>
,<=
,>=
comparisons and:*
existence check. Values must be in RFC 3339 format.next_run_time
: Supports=
,!=
,<
,>
,<=
, and>=
comparisons. Values must be in RFC 3339 format.
Filter expressions can be combined together using logical operators (
NOT
,AND
&OR
). The syntax to define filter expression is based on https://google.aip.dev/160.Examples:
state="ACTIVE" AND display_name:"my_schedule_*"
NOT display_name="my_schedule"
create_time>"2021-05-18T00:00:00Z"
end_time>"2021-05-18T00:00:00Z" OR NOT end_time:*
create_pipeline_job_request:*
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListSchedulesResponse.next_page_token][google.cloud.aiplatform.v1.ListSchedulesResponse.next_page_token] of the previous [ScheduleService.ListSchedules][google.cloud.aiplatform.v1.ScheduleService.ListSchedules] call.
- Type:
- order_by¶
A comma-separated list of fields to order by. The default sort order is in ascending order. Use “desc” after a field name for descending. You can have multiple order_by fields provided.
For example, using “create_time desc, end_time” will order results by create time in descending order, and if there are multiple schedules having the same create time, order them by the end time in ascending order.
If order_by is not specified, it will order by default with create_time in descending order.
Supported fields:
create_time
start_time
end_time
next_run_time
- Type:
- class google.cloud.aiplatform_v1.types.ListSchedulesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [ScheduleService.ListSchedules][google.cloud.aiplatform.v1.ScheduleService.ListSchedules]
- schedules¶
List of Schedules in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Schedule]
- class google.cloud.aiplatform_v1.types.ListSpecialistPoolsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1.SpecialistPoolService.ListSpecialistPools].
- parent¶
Required. The name of the SpecialistPool’s parent resource. Format:
projects/{project}/locations/{location}
- Type:
- page_token¶
The standard list page token. Typically obtained by [ListSpecialistPoolsResponse.next_page_token][google.cloud.aiplatform.v1.ListSpecialistPoolsResponse.next_page_token] of the previous [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1.SpecialistPoolService.ListSpecialistPools] call. Return first page if empty.
- Type:
- read_mask¶
Mask specifying which fields to read. FieldMask represents a set of
- class google.cloud.aiplatform_v1.types.ListSpecialistPoolsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1.SpecialistPoolService.ListSpecialistPools].
- specialist_pools¶
A list of SpecialistPools that matches the specified filter in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SpecialistPool]
- class google.cloud.aiplatform_v1.types.ListStudiesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.ListStudies][google.cloud.aiplatform.v1.VizierService.ListStudies].
- parent¶
Required. The resource name of the Location to list the Study from. Format:
projects/{project}/locations/{location}
- Type:
- page_token¶
Optional. A page token to request the next page of results. If unspecified, there are no subsequent pages.
- Type:
- class google.cloud.aiplatform_v1.types.ListStudiesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [VizierService.ListStudies][google.cloud.aiplatform.v1.VizierService.ListStudies].
- studies¶
The studies associated with the project.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Study]
- class google.cloud.aiplatform_v1.types.ListTensorboardExperimentsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments].
- parent¶
Required. The resource name of the Tensorboard to list TensorboardExperiments. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
- Type:
- page_size¶
The maximum number of TensorboardExperiments to return. The service may return fewer than this value. If unspecified, at most 50 TensorboardExperiments are returned. The maximum value is 1000; values above 1000 are coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments] must match the call that provided the page token.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListTensorboardExperimentsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments].
- tensorboard_experiments¶
The TensorboardExperiments mathching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardExperiment]
- class google.cloud.aiplatform_v1.types.ListTensorboardRunsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns].
- parent¶
Required. The resource name of the TensorboardExperiment to list TensorboardRuns. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
- Type:
- page_size¶
The maximum number of TensorboardRuns to return. The service may return fewer than this value. If unspecified, at most 50 TensorboardRuns are returned. The maximum value is 1000; values above 1000 are coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns] must match the call that provided the page token.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListTensorboardRunsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns].
- tensorboard_runs¶
The TensorboardRuns mathching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardRun]
- class google.cloud.aiplatform_v1.types.ListTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries].
- parent¶
Required. The resource name of the TensorboardRun to list TensorboardTimeSeries. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}
- Type:
- page_size¶
The maximum number of TensorboardTimeSeries to return. The service may return fewer than this value. If unspecified, at most 50 TensorboardTimeSeries are returned. The maximum value is 1000; values above 1000 are coerced to 1000.
- Type:
- page_token¶
A page token, received from a previous [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries] must match the call that provided the page token.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListTensorboardTimeSeriesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries].
- tensorboard_time_series¶
The TensorboardTimeSeries mathching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardTimeSeries]
- class google.cloud.aiplatform_v1.types.ListTensorboardsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards].
- parent¶
Required. The resource name of the Location to list Tensorboards. Format:
projects/{project}/locations/{location}
- Type:
- page_size¶
The maximum number of Tensorboards to return. The service may return fewer than this value. If unspecified, at most 100 Tensorboards are returned. The maximum value is 100; values above 100 are coerced to 100.
- Type:
- page_token¶
A page token, received from a previous [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards] must match the call that provided the page token.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListTensorboardsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards].
- tensorboards¶
The Tensorboards mathching the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensorboard]
- class google.cloud.aiplatform_v1.types.ListTrainingPipelinesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1.PipelineService.ListTrainingPipelines].
- parent¶
Required. The resource name of the Location to list the TrainingPipelines from. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
The standard list filter.
Supported fields:
display_name
supports=
,!=
comparisons, and:
wildcard.state
supports=
,!=
comparisons.training_task_definition
=
,!=
comparisons, and:
wildcard.create_time
supports=
,!=
,<
,<=
,>
,>=
comparisons.create_time
must be in RFC 3339 format.labels
supports general map functions that is:labels.key=value
- key:value equality `labels.key:* - key existence
Some examples of using the filter are:
state="PIPELINE_STATE_SUCCEEDED" AND display_name:"my_pipeline_*"
state!="PIPELINE_STATE_FAILED" OR display_name="my_pipeline"
NOT display_name="my_pipeline"
create_time>"2021-05-18T00:00:00Z"
training_task_definition:"*automl_text_classification*"
- Type:
- page_token¶
The standard list page token. Typically obtained via [ListTrainingPipelinesResponse.next_page_token][google.cloud.aiplatform.v1.ListTrainingPipelinesResponse.next_page_token] of the previous [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1.PipelineService.ListTrainingPipelines] call.
- Type:
- read_mask¶
Mask specifying which fields to read.
- class google.cloud.aiplatform_v1.types.ListTrainingPipelinesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1.PipelineService.ListTrainingPipelines]
- training_pipelines¶
List of TrainingPipelines in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TrainingPipeline]
- class google.cloud.aiplatform_v1.types.ListTrialsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.ListTrials][google.cloud.aiplatform.v1.VizierService.ListTrials].
- parent¶
Required. The resource name of the Study to list the Trial from. Format:
projects/{project}/locations/{location}/studies/{study}
- Type:
- page_token¶
Optional. A page token to request the next page of results. If unspecified, there are no subsequent pages.
- Type:
- class google.cloud.aiplatform_v1.types.ListTrialsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [VizierService.ListTrials][google.cloud.aiplatform.v1.VizierService.ListTrials].
- trials¶
The Trials associated with the Study.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial]
- class google.cloud.aiplatform_v1.types.ListTuningJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1.GenAiTuningService.ListTuningJobs].
- parent¶
Required. The resource name of the Location to list the TuningJobs from. Format:
projects/{project}/locations/{location}
- Type:
- class google.cloud.aiplatform_v1.types.ListTuningJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1.GenAiTuningService.ListTuningJobs]
- tuning_jobs¶
List of TuningJobs in the requested page.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TuningJob]
- class google.cloud.aiplatform_v1.types.LogprobsResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Logprobs Result
- top_candidates¶
Length = total number of decoding steps.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.LogprobsResult.TopCandidates]
- chosen_candidates¶
Length = total number of decoding steps. The chosen candidates may or may not be in top_candidates.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.LogprobsResult.Candidate]
- class Candidate(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Candidate for the logprobs token and score.
- class TopCandidates(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Candidates with top log probabilities at each decoding step.
- candidates¶
Sorted by log probability in descending order.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.LogprobsResult.Candidate]
- class google.cloud.aiplatform_v1.types.LookupStudyRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.LookupStudy][google.cloud.aiplatform.v1.VizierService.LookupStudy].
- parent¶
Required. The resource name of the Location to get the Study from. Format:
projects/{project}/locations/{location}
- Type:
- class google.cloud.aiplatform_v1.types.MachineSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specification of a single machine.
- machine_type¶
Immutable. The type of the machine.
See the list of machine types supported for prediction
See the list of machine types supported for custom training.
For [DeployedModel][google.cloud.aiplatform.v1.DeployedModel] this field is optional, and the default value is
n1-standard-2
. For [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob] or as part of [WorkerPoolSpec][google.cloud.aiplatform.v1.WorkerPoolSpec] this field is required.- Type:
- accelerator_type¶
Immutable. The type of accelerator(s) that may be attached to the machine as per [accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count].
- tpu_topology¶
Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: “2x2x1”).
- Type:
- reservation_affinity¶
Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
- class google.cloud.aiplatform_v1.types.ManualBatchTuningParameters(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Manual batch tuning parameters.
- batch_size¶
Immutable. The number of the records (e.g. instances) of the operation given in each batch to a machine replica. Machine type, and size of a single record should be considered when setting this parameter, higher value speeds up the batch operation’s execution, but too high value will result in a whole batch not fitting in a machine’s memory, and the whole operation will fail. The default value is 64.
- Type:
- class google.cloud.aiplatform_v1.types.Measurement(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.
- elapsed_duration¶
Output only. Time that the Trial has been running at the point of this Measurement.
- step_count¶
Output only. The number of steps the machine learning model has been trained for. Must be non-negative.
- Type:
- metrics¶
Output only. A list of metrics got by evaluating the objective functions using suggested Parameter values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Measurement.Metric]
- class google.cloud.aiplatform_v1.types.MergeVersionAliasesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.MergeVersionAliases][google.cloud.aiplatform.v1.ModelService.MergeVersionAliases].
- name¶
Required. The name of the model version to merge aliases, with a version ID explicitly included.
Example:
projects/{project}/locations/{location}/models/{model}@1234
- Type:
- version_aliases¶
Required. The set of version aliases to merge. The alias should be at most 128 characters, and match
[a-z][a-zA-Z0-9-]{0,126}[a-z-0-9]
. Add the-
prefix to an alias means removing that alias from the version.-
is NOT counted in the 128 characters. Example:-golden
means removing thegolden
alias from the version.There is NO ordering in aliases, which means
The aliases returned from GetModel API might not have the exactly same order from this MergeVersionAliases API. 2) Adding and deleting the same alias in the request is not recommended, and the 2 operations will be cancelled out.
- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.MetadataSchema(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Instance of a general MetadataSchema.
- schema_version¶
The version of the MetadataSchema. The version’s format must match the following regular expression:
^[0-9]+[.][0-9]+[.][0-9]+$
, which would allow to order/compare different versions. Example: 1.0.0, 1.0.1, etc.- Type:
- schema¶
Required. The raw YAML string representation of the MetadataSchema. The combination of [MetadataSchema.version] and the schema name given by
title
in [MetadataSchema.schema] must be unique within a MetadataStore.The schema is defined as an OpenAPI 3.0.2 MetadataSchema Object
- Type:
- schema_type¶
The type of the MetadataSchema. This is a property that identifies which metadata types will use the MetadataSchema.
- create_time¶
Output only. Timestamp when this MetadataSchema was created.
- class MetadataSchemaType(value)[source]¶
Bases:
Enum
Describes the type of the MetadataSchema.
- Values:
- METADATA_SCHEMA_TYPE_UNSPECIFIED (0):
Unspecified type for the MetadataSchema.
- ARTIFACT_TYPE (1):
A type indicating that the MetadataSchema will be used by Artifacts.
- EXECUTION_TYPE (2):
A typee indicating that the MetadataSchema will be used by Executions.
- CONTEXT_TYPE (3):
A state indicating that the MetadataSchema will be used by Contexts.
- class google.cloud.aiplatform_v1.types.MetadataStore(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Instance of a metadata store. Contains a set of metadata that can be queried.
- create_time¶
Output only. Timestamp when this MetadataStore was created.
- update_time¶
Output only. Timestamp when this MetadataStore was last updated.
- encryption_spec¶
Customer-managed encryption key spec for a Metadata Store. If set, this Metadata Store and all sub-resources of this Metadata Store are secured using this key.
- state¶
Output only. State information of the MetadataStore.
- dataplex_config¶
Optional. Dataplex integration settings.
- class google.cloud.aiplatform_v1.types.MetricxInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for MetricX metric.
- metric_spec¶
Required. Spec for Metricx metric.
- instance¶
Required. Metricx instance.
- class google.cloud.aiplatform_v1.types.MetricxInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for MetricX instance - The fields used for evaluation are dependent on the MetricX version.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.MetricxResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for MetricX result - calculates the MetricX score for the given instance using the version specified in the spec.
- class google.cloud.aiplatform_v1.types.MetricxSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for MetricX metric.
- target_language¶
Optional. Target language in BCP-47 format. Covers both prediction and reference.
- Type:
- class MetricxVersion(value)[source]¶
Bases:
Enum
MetricX Version options.
- Values:
- METRICX_VERSION_UNSPECIFIED (0):
MetricX version unspecified.
- METRICX_24_REF (1):
MetricX 2024 (2.6) for translation + reference (reference-based).
- METRICX_24_SRC (2):
MetricX 2024 (2.6) for translation + source (QE).
- METRICX_24_SRC_REF (3):
MetricX 2024 (2.6) for translation + source + reference (source-reference-combined).
- class google.cloud.aiplatform_v1.types.MigratableResource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- ml_engine_model_version¶
Output only. Represents one Version in ml.googleapis.com.
This field is a member of oneof
resource
.
- automl_model¶
Output only. Represents one Model in automl.googleapis.com.
This field is a member of oneof
resource
.
- automl_dataset¶
Output only. Represents one Dataset in automl.googleapis.com.
This field is a member of oneof
resource
.
- data_labeling_dataset¶
Output only. Represents one Dataset in datalabeling.googleapis.com.
This field is a member of oneof
resource
.
- last_migrate_time¶
Output only. Timestamp when the last migration attempt on this MigratableResource started. Will not be set if there’s no migration attempt on this MigratableResource.
- last_update_time¶
Output only. Timestamp when this MigratableResource was last updated.
- class AutomlDataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one Dataset in automl.googleapis.com.
- dataset¶
Full resource name of automl Dataset. Format:
projects/{project}/locations/{location}/datasets/{dataset}
.- Type:
- class AutomlModel(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one Model in automl.googleapis.com.
- model¶
Full resource name of automl Model. Format:
projects/{project}/locations/{location}/models/{model}
.- Type:
- class DataLabelingDataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one Dataset in datalabeling.googleapis.com.
- dataset¶
Full resource name of data labeling Dataset. Format:
projects/{project}/datasets/{dataset}
.- Type:
- data_labeling_annotated_datasets¶
The migratable AnnotatedDataset in datalabeling.googleapis.com belongs to the data labeling Dataset.
- class DataLabelingAnnotatedDataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one AnnotatedDataset in datalabeling.googleapis.com.
- annotated_dataset¶
Full resource name of data labeling AnnotatedDataset. Format:
projects/{project}/datasets/{dataset}/annotatedDatasets/{annotated_dataset}
.- Type:
- class MlEngineModelVersion(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents one model Version in ml.googleapis.com.
- endpoint¶
The ml.googleapis.com endpoint that this model Version currently lives in. Example values:
ml.googleapis.com
us-centrall-ml.googleapis.com
europe-west4-ml.googleapis.com
asia-east1-ml.googleapis.com
- Type:
- class google.cloud.aiplatform_v1.types.MigrateResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- migrate_ml_engine_model_version_config¶
Config for migrating Version in ml.googleapis.com to Vertex AI’s Model.
This field is a member of oneof
request
.
- migrate_automl_model_config¶
Config for migrating Model in automl.googleapis.com to Vertex AI’s Model.
This field is a member of oneof
request
.
- migrate_automl_dataset_config¶
Config for migrating Dataset in automl.googleapis.com to Vertex AI’s Dataset.
This field is a member of oneof
request
.
- migrate_data_labeling_dataset_config¶
Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI’s Dataset.
This field is a member of oneof
request
.
- class MigrateAutomlDatasetConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for migrating Dataset in automl.googleapis.com to Vertex AI’s Dataset.
- dataset¶
Required. Full resource name of automl Dataset. Format:
projects/{project}/locations/{location}/datasets/{dataset}
.- Type:
- class MigrateAutomlModelConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for migrating Model in automl.googleapis.com to Vertex AI’s Model.
- model¶
Required. Full resource name of automl Model. Format:
projects/{project}/locations/{location}/models/{model}
.- Type:
- class MigrateDataLabelingDatasetConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI’s Dataset.
- dataset¶
Required. Full resource name of data labeling Dataset. Format:
projects/{project}/datasets/{dataset}
.- Type:
- dataset_display_name¶
Optional. Display name of the Dataset in Vertex AI. System will pick a display name if unspecified.
- Type:
- migrate_data_labeling_annotated_dataset_configs¶
Optional. Configs for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI’s SavedQuery. The specified AnnotatedDatasets have to belong to the datalabeling Dataset.
- class MigrateMlEngineModelVersionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for migrating version in ml.googleapis.com to Vertex AI’s Model.
- endpoint¶
Required. The ml.googleapis.com endpoint that this model version should be migrated from. Example values:
ml.googleapis.com
us-centrall-ml.googleapis.com
europe-west4-ml.googleapis.com
asia-east1-ml.googleapis.com
- Type:
- model_version¶
Required. Full resource name of ml engine model version. Format:
projects/{project}/models/{model}/versions/{version}
.- Type:
- class google.cloud.aiplatform_v1.types.MigrateResourceResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes a successfully migrated resource.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- migratable_resource¶
Before migration, the identifier in ml.googleapis.com, automl.googleapis.com or datalabeling.googleapis.com.
- class google.cloud.aiplatform_v1.types.Model(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A trained machine learning Model.
- version_id¶
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
- Type:
- version_aliases¶
User provided version aliases so that a model version can be referenced via alias (i.e.
projects/{project}/locations/{location}/models/{model_id}@{version_alias}
instead of auto-generated version id (i.e.projects/{project}/locations/{location}/models/{model_id}@{version_id})
. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.- Type:
MutableSequence[str]
- version_create_time¶
Output only. Timestamp when this version was created.
- version_update_time¶
Output only. Timestamp when this version was most recently updated.
- display_name¶
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- predict_schemata¶
The schemata that describe formats of the Model’s predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
- metadata_schema_uri¶
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- metadata¶
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
- supported_export_formats¶
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Model.ExportFormat]
- training_pipeline¶
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
- Type:
- pipeline_job¶
Optional. This field is populated if the model is produced by a pipeline job.
- Type:
- container_spec¶
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
- artifact_uri¶
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
- Type:
- supported_deployment_resources_types¶
Output only. When this Model is deployed, its prediction resources are described by the
prediction_resources
field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats].- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Model.DeploymentResourcesType]
- supported_input_storage_formats¶
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema.
The possible formats are:
jsonl
The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].csv
The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].tf-record
The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].tf-record-gzip
Similar totf-record
, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].bigquery
Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.bigquery_source].file-list
Each line of the file is the location of an instance to process, usesgcs_source
field of the [InputConfig][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig] object.
If this Model doesn’t support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
- Type:
MutableSequence[str]
- supported_output_storage_formats¶
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).
The possible formats are:
jsonl
The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].csv
The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].bigquery
Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.bigquery_destination] .
If this Model doesn’t support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
- Type:
MutableSequence[str]
- create_time¶
Output only. Timestamp when this Model was uploaded into Vertex AI.
- update_time¶
Output only. Timestamp when this Model was most recently updated.
- deployed_models¶
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedModelRef]
- explanation_spec¶
The default explanation specification for this Model.
The Model can be used for [requesting explanation][google.cloud.aiplatform.v1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1.BatchPredictionJob.generate_explanation] if it is populated.
All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- data_stats¶
Stats of data used for training or evaluating the Model.
Only populated when the Model is trained by a TrainingPipeline with [data_input_config][google.cloud.aiplatform.v1.TrainingPipeline.input_data_config].
- encryption_spec¶
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
- model_source_info¶
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
- original_model_info¶
Output only. If this Model is a copy of another Model, this contains info about the original.
- metadata_artifact¶
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is
projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}
.- Type:
- base_model_source¶
Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
- class BaseModelSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- model_garden_source¶
Source information of Model Garden models.
This field is a member of oneof
source
.
- class DataStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Stats of data used for train or evaluate the Model.
- validation_data_items_count¶
Number of DataItems that were used for validating this Model during training.
- Type:
- test_data_items_count¶
Number of DataItems that were used for evaluating this Model. If the Model is evaluated multiple times, this will be the number of test DataItems used by the first evaluation. If the Model is not evaluated, the number is 0.
- Type:
- validation_annotations_count¶
Number of Annotations that are used for validating this Model during training.
- Type:
- class DeploymentResourcesType(value)[source]¶
Bases:
Enum
Identifies a type of Model’s prediction resources.
- Values:
- DEPLOYMENT_RESOURCES_TYPE_UNSPECIFIED (0):
Should not be used.
- DEDICATED_RESOURCES (1):
Resources that are dedicated to the [DeployedModel][google.cloud.aiplatform.v1.DeployedModel], and that need a higher degree of manual configuration.
- AUTOMATIC_RESOURCES (2):
Resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
- SHARED_RESOURCES (3):
Resources that can be shared by multiple [DeployedModels][google.cloud.aiplatform.v1.DeployedModel]. A pre-configured [DeploymentResourcePool][google.cloud.aiplatform.v1.DeploymentResourcePool] is required.
- class ExportFormat(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents export format supported by the Model. All formats export to Google Cloud Storage.
- id¶
Output only. The ID of the export format. The possible format IDs are:
tflite
Used for Android mobile devices.edgetpu-tflite
Used for Edge TPU devices.tf-saved-model
A tensorflow model in SavedModel format.tf-js
A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.core-ml
Used for iOS mobile devices.custom-trained
A Model that was uploaded or trained by custom code.
- Type:
- exportable_contents¶
Output only. The content of this Model that may be exported.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Model.ExportFormat.ExportableContent]
- class ExportableContent(value)[source]¶
Bases:
Enum
The Model content that can be exported.
- Values:
- EXPORTABLE_CONTENT_UNSPECIFIED (0):
Should not be used.
- ARTIFACT (1):
Model artifact and any of its supported files. Will be exported to the location specified by the
artifactDestination
field of the [ExportModelRequest.output_config][google.cloud.aiplatform.v1.ExportModelRequest.output_config] object.- IMAGE (2):
The container image that is to be used when deploying this Model. Will be exported to the location specified by the
imageDestination
field of the [ExportModelRequest.output_config][google.cloud.aiplatform.v1.ExportModelRequest.output_config] object.
- class google.cloud.aiplatform_v1.types.ModelContainerSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.
- image_uri¶
Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the container publishing requirements, including permissions requirements for the Vertex AI Service Agent.
The container image is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], stored internally, and this original path is afterwards not used.
To learn about the requirements for the Docker image itself, see Custom container requirements.
You can use the URI to one of Vertex AI’s pre-built container images for prediction in this field.
- Type:
- command¶
Immutable. Specifies the command that runs when the container starts. This overrides the container’s ENTRYPOINT. Specify this field as an array of executable and arguments, similar to a Docker
ENTRYPOINT
’s “exec” form, not its “shell” form.If you do not specify this field, then the container’s
ENTRYPOINT
runs, in conjunction with the [args][google.cloud.aiplatform.v1.ModelContainerSpec.args] field or the container’s`CMD
<https://docs.docker.com/engine/reference/builder/#cmd>`__, if either exists. If this field is not specified and the container does not have anENTRYPOINT
, then refer to the Docker documentation about how ``CMD` andENTRYPOINT
interact <https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact>`__.If you specify this field, then you can also specify the
args
field to provide additional arguments for this command. However, if you specify this field, then the container’sCMD
is ignored. See the Kubernetes documentation about how the ``command` andargs
fields interact with a container’sENTRYPOINT
andCMD
<https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes>`__.In this field, you can reference environment variables set by Vertex AI and environment variables set in the [env][google.cloud.aiplatform.v1.ModelContainerSpec.env] field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $(VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with
$$
; for example: $$(VARIABLE_NAME) This field corresponds to thecommand
field of the Kubernetes Containers v1 core API.- Type:
MutableSequence[str]
- args¶
Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container’s
`CMD
<https://docs.docker.com/engine/reference/builder/#cmd>`__. Specify this field as an array of executable and arguments, similar to a DockerCMD
’s “default parameters” form.If you don’t specify this field but do specify the [command][google.cloud.aiplatform.v1.ModelContainerSpec.command] field, then the command from the
command
field runs without any additional arguments. See the Kubernetes documentation about how the ``command` andargs
fields interact with a container’sENTRYPOINT
andCMD
<https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes>`__.If you don’t specify this field and don’t specify the
command
field, then the container’s`ENTRYPOINT
<https://docs.docker.com/engine/reference/builder/#cmd>`__ andCMD
determine what runs based on their default behavior. See the Docker documentation about how ``CMD` andENTRYPOINT
interact <https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact>`__.In this field, you can reference environment variables set by Vertex AI and environment variables set in the [env][google.cloud.aiplatform.v1.ModelContainerSpec.env] field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $(VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with
$$
; for example: $$(VARIABLE_NAME) This field corresponds to theargs
field of the Kubernetes Containers v1 core API.- Type:
MutableSequence[str]
- env¶
Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables.
Additionally, the [command][google.cloud.aiplatform.v1.ModelContainerSpec.command] and [args][google.cloud.aiplatform.v1.ModelContainerSpec.args] fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable
VAR_2
to have the valuefoo bar
:[ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ]
If you switch the order of the variables in the example, then the expansion does not occur.
This field corresponds to the
env
field of the Kubernetes Containers v1 core API.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EnvVar]
- ports¶
Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port.
If you do not specify this field, it defaults to following value:
[ { "containerPort": 8080 } ]
Vertex AI does not use ports other than the first one listed. This field corresponds to the
ports
field of the Kubernetes Containers v1 core API.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Port]
- predict_route¶
Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using [projects.locations.endpoints.predict][google.cloud.aiplatform.v1.PredictionService.Predict] to this path on the container’s IP address and port. Vertex AI then returns the container’s response in the API response.
For example, if you set this field to
/foo
, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the/foo
path on the port of your container specified by the first value of thisModelContainerSpec
’s [ports][google.cloud.aiplatform.v1.ModelContainerSpec.ports] field.If you don’t specify this field, it defaults to the following value when you [deploy this Model to an Endpoint][google.cloud.aiplatform.v1.EndpointService.DeployModel]: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows:
ENDPOINT: The last segment (following
endpoints/
)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the`AIP_ENDPOINT_ID
environment variable <https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables>`__.)DEPLOYED_MODEL: [DeployedModel.id][google.cloud.aiplatform.v1.DeployedModel.id] of the
DeployedModel
. (Vertex AI makes this value available to your container code as the`AIP_DEPLOYED_MODEL_ID
environment variable <https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables>`__.)
- Type:
- health_route¶
Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container’s IP address and port to check that the container is healthy. Read more about health checks.
For example, if you set this field to
/bar
, then Vertex AI intermittently sends a GET request to the/bar
path on the port of your container specified by the first value of thisModelContainerSpec
’s [ports][google.cloud.aiplatform.v1.ModelContainerSpec.ports] field.If you don’t specify this field, it defaults to the following value when you [deploy this Model to an Endpoint][google.cloud.aiplatform.v1.EndpointService.DeployModel]: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows:
ENDPOINT: The last segment (following
endpoints/
)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the`AIP_ENDPOINT_ID
environment variable <https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables>`__.)DEPLOYED_MODEL: [DeployedModel.id][google.cloud.aiplatform.v1.DeployedModel.id] of the
DeployedModel
. (Vertex AI makes this value available to your container code as the`AIP_DEPLOYED_MODEL_ID
environment variable <https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables>`__.)
- Type:
- grpc_ports¶
Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port.
If you do not specify this field, gRPC requests to the container will be disabled.
Vertex AI does not use ports other than the first one listed. This field corresponds to the
ports
field of the Kubernetes Containers v1 core API.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Port]
- deployment_timeout¶
Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
- Type:
- startup_probe¶
Immutable. Specification for Kubernetes startup probe.
- health_probe¶
Immutable. Specification for Kubernetes readiness probe.
- class google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringBigQueryTable(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name as well as some information of the logs stored in this table.
- log_source¶
The source of log.
- log_type¶
The type of log.
- bigquery_table_path¶
The created BigQuery table to store logs. Customer could do their own query & analysis. Format:
bq://<project_id>.model_deployment_monitoring_<endpoint_id>.<tolower(log_source)>_<tolower(log_type)>
- Type:
- request_response_logging_schema_version¶
Output only. The schema version of the request/response logging BigQuery table. Default to v1 if unset.
- Type:
- class google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
- display_name¶
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.
- Type:
- endpoint¶
Required. Endpoint resource name. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- state¶
Output only. The detailed state of the monitoring job. When the job is still creating, the state will be ‘PENDING’. Once the job is successfully created, the state will be ‘RUNNING’. Pause the job, the state will be ‘PAUSED’. Resume the job, the state will return to ‘RUNNING’.
- schedule_state¶
Output only. Schedule state when the monitoring job is in Running state.
- latest_monitoring_pipeline_metadata¶
Output only. Latest triggered monitoring pipeline metadata.
- model_deployment_monitoring_objective_configs¶
Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringObjectiveConfig]
- model_deployment_monitoring_schedule_config¶
Required. Schedule config for running the monitoring job.
- logging_sampling_strategy¶
Required. Sample Strategy for logging.
- model_monitoring_alert_config¶
Alert config for model monitoring.
- predict_instance_schema_uri¶
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint’s prediction (and explanation). If not set, we will generate predict schema from collected predict requests.
- Type:
- sample_predict_instance¶
Sample Predict instance, same format as [PredictRequest.instances][google.cloud.aiplatform.v1.PredictRequest.instances], this can be set as a replacement of [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.predict_instance_schema_uri]. If not set, we will generate predict schema from collected predict requests.
- analysis_instance_schema_uri¶
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
If this field is empty, all the feature data types are inferred from [predict_instance_schema_uri][google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.predict_instance_schema_uri], meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.
- Type:
- bigquery_tables¶
Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:
- Training data logging predict
request/response
Serving data logging predict request/response
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringBigQueryTable]
- log_ttl¶
The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.
- labels¶
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- create_time¶
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
- update_time¶
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.
- next_schedule_time¶
Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.
- stats_anomalies_base_directory¶
Stats anomalies base folder path.
- encryption_spec¶
Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.
- enable_monitoring_pipeline_logs¶
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing.
- Type:
- error¶
Output only. Only populated when the job’s state is
JOB_STATE_FAILED
orJOB_STATE_CANCELLED
.- Type:
google.rpc.status_pb2.Status
- class LatestMonitoringPipelineMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
All metadata of most recent monitoring pipelines.
- run_time¶
The time that most recent monitoring pipelines that is related to this run.
- status¶
The status of the most recent monitoring pipeline.
- Type:
google.rpc.status_pb2.Status
- class MonitoringScheduleState(value)[source]¶
Bases:
Enum
The state to Specify the monitoring pipeline.
- Values:
- MONITORING_SCHEDULE_STATE_UNSPECIFIED (0):
Unspecified state.
- PENDING (1):
The pipeline is picked up and wait to run.
- OFFLINE (2):
The pipeline is offline and will be scheduled for next run.
- RUNNING (3):
The pipeline is running.
- class google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringObjectiveConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
ModelDeploymentMonitoringObjectiveConfig contains the pair of deployed_model_id to ModelMonitoringObjectiveConfig.
- objective_config¶
The objective config of for the modelmonitoring job of this deployed model.
- class google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringObjectiveType(value)[source]¶
Bases:
Enum
The Model Monitoring Objective types.
- Values:
- MODEL_DEPLOYMENT_MONITORING_OBJECTIVE_TYPE_UNSPECIFIED (0):
Default value, should not be set.
- RAW_FEATURE_SKEW (1):
Raw feature values’ stats to detect skew between Training-Prediction datasets.
- RAW_FEATURE_DRIFT (2):
Raw feature values’ stats to detect drift between Serving-Prediction datasets.
- FEATURE_ATTRIBUTION_SKEW (3):
Feature attribution scores to detect skew between Training-Prediction datasets.
- FEATURE_ATTRIBUTION_DRIFT (4):
Feature attribution scores to detect skew between Prediction datasets collected within different time windows.
- class google.cloud.aiplatform_v1.types.ModelDeploymentMonitoringScheduleConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for scheduling monitoring job.
- monitor_interval¶
Required. The model monitoring job scheduling interval. It will be rounded up to next full hour. This defines how often the monitoring jobs are triggered.
- monitor_window¶
The time window of the prediction data being included in each prediction dataset. This window specifies how long the data should be collected from historical model results for each run. If not set, [ModelDeploymentMonitoringScheduleConfig.monitor_interval][google.cloud.aiplatform.v1.ModelDeploymentMonitoringScheduleConfig.monitor_interval] will be used. e.g. If currently the cutoff time is 2022-01-08 14:30:00 and the monitor_window is set to be 3600, then data from 2022-01-08 13:30:00 to 2022-01-08 14:30:00 will be retrieved and aggregated to calculate the monitoring statistics.
- class google.cloud.aiplatform_v1.types.ModelEvaluation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A collection of metrics calculated by comparing Model’s predictions on all of the test data against annotations from the test data.
- metrics_schema_uri¶
Points to a YAML file stored on Google Cloud Storage describing the [metrics][google.cloud.aiplatform.v1.ModelEvaluation.metrics] of this ModelEvaluation. The schema is defined as an OpenAPI 3.0.2 Schema Object.
- Type:
- metrics¶
Evaluation metrics of the Model. The schema of the metrics is stored in [metrics_schema_uri][google.cloud.aiplatform.v1.ModelEvaluation.metrics_schema_uri]
- create_time¶
Output only. Timestamp when this ModelEvaluation was created.
- slice_dimensions¶
All possible [dimensions][google.cloud.aiplatform.v1.ModelEvaluationSlice.Slice.dimension] of ModelEvaluationSlices. The dimensions can be used as the filter of the [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices] request, in the form of
slice.dimension = <dimension>
.- Type:
MutableSequence[str]
- data_item_schema_uri¶
Points to a YAML file stored on Google Cloud Storage describing [EvaluatedDataItemView.data_item_payload][] and [EvaluatedAnnotation.data_item_payload][google.cloud.aiplatform.v1.EvaluatedAnnotation.data_item_payload]. The schema is defined as an OpenAPI 3.0.2 Schema Object.
This field is not populated if there are neither EvaluatedDataItemViews nor EvaluatedAnnotations under this ModelEvaluation.
- Type:
- annotation_schema_uri¶
Points to a YAML file stored on Google Cloud Storage describing [EvaluatedDataItemView.predictions][], [EvaluatedDataItemView.ground_truths][], [EvaluatedAnnotation.predictions][google.cloud.aiplatform.v1.EvaluatedAnnotation.predictions], and [EvaluatedAnnotation.ground_truths][google.cloud.aiplatform.v1.EvaluatedAnnotation.ground_truths]. The schema is defined as an OpenAPI 3.0.2 Schema Object.
This field is not populated if there are neither EvaluatedDataItemViews nor EvaluatedAnnotations under this ModelEvaluation.
- Type:
- model_explanation¶
Aggregated explanation metrics for the Model’s prediction output over the data this ModelEvaluation uses. This field is populated only if the Model is evaluated with explanations, and only for AutoML tabular Models.
- explanation_specs¶
Describes the values of [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] that are used for explaining the predicted values on the evaluated data.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelEvaluation.ModelEvaluationExplanationSpec]
- metadata¶
The metadata of the ModelEvaluation. For the ModelEvaluation uploaded from Managed Pipeline, metadata contains a structured value with keys of “pipeline_job_id”, “evaluation_dataset_type”, “evaluation_dataset_path”, “row_based_metrics_path”.
- class ModelEvaluationExplanationSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- explanation_type¶
Explanation type.
For AutoML Image Classification models, possible values are:
image-integrated-gradients
image-xrai
- Type:
- explanation_spec¶
Explanation spec details.
- class google.cloud.aiplatform_v1.types.ModelEvaluationSlice(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A collection of metrics calculated by comparing Model’s predictions on a slice of the test data against ground truth annotations.
- slice_¶
Output only. The slice of the test data that is used to evaluate the Model.
- metrics_schema_uri¶
Output only. Points to a YAML file stored on Google Cloud Storage describing the [metrics][google.cloud.aiplatform.v1.ModelEvaluationSlice.metrics] of this ModelEvaluationSlice. The schema is defined as an OpenAPI 3.0.2 Schema Object.
- Type:
- metrics¶
Output only. Sliced evaluation metrics of the Model. The schema of the metrics is stored in [metrics_schema_uri][google.cloud.aiplatform.v1.ModelEvaluationSlice.metrics_schema_uri]
- create_time¶
Output only. Timestamp when this ModelEvaluationSlice was created.
- model_explanation¶
Output only. Aggregated explanation metrics for the Model’s prediction output over the data this ModelEvaluation uses. This field is populated only if the Model is evaluated with explanations, and only for tabular Models.
- class Slice(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Definition of a slice.
- dimension¶
Output only. The dimension of the slice. Well-known dimensions are:
annotationSpec
: This slice is on the test data that has either ground truth or prediction with [AnnotationSpec.display_name][google.cloud.aiplatform.v1.AnnotationSpec.display_name] equals to [value][google.cloud.aiplatform.v1.ModelEvaluationSlice.Slice.value].slice
: This slice is a user customized slice defined by its SliceSpec.
- Type:
- slice_spec¶
Output only. Specification for how the data was sliced.
- class SliceSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specification for how the data should be sliced.
- configs¶
Mapping configuration for this SliceSpec. The key is the name of the feature. By default, the key will be prefixed by “instance” as a dictionary prefix for Vertex Batch Predictions output format.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ModelEvaluationSlice.Slice.SliceSpec.SliceConfig]
- class Range(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A range of values for slice(s).
low
is inclusive,high
is exclusive.
- class SliceConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Specification message containing the config for this SliceSpec. When
kind
is selected asvalue
and/orrange
, only a single slice will be computed. Whenall_values
is present, a separate slice will be computed for each possible label/value for the corresponding key inconfig
. Examples, with feature zip_code with values 12345, 23334, 88888 and feature country with values “US”, “Canada”, “Mexico” in the dataset:Example 1:
{ "zip_code": { "value": { "float_value": 12345.0 } } }
A single slice for any data with zip_code 12345 in the dataset.
Example 2:
{ "zip_code": { "range": { "low": 12345, "high": 20000 } } }
A single slice containing data where the zip_codes between 12345 and 20000 For this example, data with the zip_code of 12345 will be in this slice.
Example 3:
{ "zip_code": { "range": { "low": 10000, "high": 20000 } }, "country": { "value": { "string_value": "US" } } }
A single slice containing data where the zip_codes between 10000 and 20000 has the country “US”. For this example, data with the zip_code of 12345 and country “US” will be in this slice.
Example 4:
{ "country": {"all_values": { "value": true } } }
Three slices are computed, one for each unique country in the dataset.
Example 5:
{ "country": { "all_values": { "value": true } }, "zip_code": { "value": { "float_value": 12345.0 } } }
Three slices are computed, one for each unique country in the dataset where the zip_code is also 12345. For this example, data with zip_code 12345 and country “US” will be in one slice, zip_code 12345 and country “Canada” in another slice, and zip_code 12345 and country “Mexico” in another slice, totaling 3 slices.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- value¶
A unique specific value for a given feature. Example:
{ "value": { "string_value": "12345" } }
This field is a member of oneof
kind
.
- range_¶
A range of values for a numerical feature. Example:
{"range":{"low":10000.0,"high":50000.0}}
will capture 12345 and 23334 in the slice.This field is a member of oneof
kind
.
- class Value(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Single value that supports strings and floats.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class google.cloud.aiplatform_v1.types.ModelExplanation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Aggregated explanation metrics for a Model over a set of instances.
- mean_attributions¶
Output only. Aggregated attributions explaining the Model’s prediction outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1.Attribution.output_index] can be used to identify which output this attribution is explaining.
The [baselineOutputValue][google.cloud.aiplatform.v1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1.Attribution.feature_attributions] fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1.Attribution.approximation_error] is not populated.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Attribution]
- class google.cloud.aiplatform_v1.types.ModelGardenSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains information about the source of the models generated from Model Garden.
- class google.cloud.aiplatform_v1.types.ModelMonitoringAlertConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The alert config for model monitoring.
- enable_logging¶
Dump the anomalies to Cloud Logging. The anomalies will be put to json payload encoded from proto [ModelMonitoringStatsAnomalies][google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies]. This can be further synced to Pub/Sub or any other services supported by Cloud Logging.
- Type:
- class google.cloud.aiplatform_v1.types.ModelMonitoringObjectiveConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The objective configuration for model monitoring, including the information needed to detect anomalies for one particular model.
- training_dataset¶
Training dataset for models. This field has to be set only if TrainingPredictionSkewDetectionConfig is specified.
- training_prediction_skew_detection_config¶
The config for skew between training data and prediction data.
- prediction_drift_detection_config¶
The config for drift of prediction data.
- explanation_config¶
The config for integrating with Vertex Explainable AI.
- class ExplanationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for integrating with Vertex Explainable AI. Only applicable if the Model has explanation_spec populated.
- enable_feature_attributes¶
If want to analyze the Vertex Explainable AI feature attribute scores or not. If set to true, Vertex AI will log the feature attributions from explain response and do the skew/drift detection for them.
- Type:
- explanation_baseline¶
Predictions generated by the BatchPredictionJob using baseline dataset.
- class ExplanationBaseline(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Output from [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob] for Model Monitoring baseline dataset, which can be used to generate baseline attribution scores.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- prediction_format¶
The storage format of the predictions generated BatchPrediction job.
- class PredictionDriftDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for Prediction data drift detection.
- drift_thresholds¶
Key is the feature name and value is the threshold. If a feature needs to be monitored for drift, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between different time windws.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ThresholdConfig]
- attribution_score_drift_thresholds¶
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between different time windows.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ThresholdConfig]
- default_drift_threshold¶
Drift anomaly detection threshold used by all features. When the per-feature thresholds are not set, this field can be used to specify a threshold for all features.
- class TrainingDataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Training Dataset information.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- dataset¶
The resource name of the Dataset used to train this Model.
This field is a member of oneof
data_source
.- Type:
- gcs_source¶
The Google Cloud Storage uri of the unmanaged Dataset used to train this Model.
This field is a member of oneof
data_source
.
- bigquery_source¶
The BigQuery table of the unmanaged Dataset used to train this Model.
This field is a member of oneof
data_source
.
- data_format¶
Data format of the dataset, only applicable if the input is from Google Cloud Storage. The possible formats are:
“tf-record” The source file is a TFRecord file.
“csv” The source file is a CSV file. “jsonl” The source file is a JSONL file.
- Type:
- target_field¶
The target field name the model is to predict. This field will be excluded when doing Predict and (or) Explain for the training data.
- Type:
- logging_sampling_strategy¶
Strategy to sample data from Training Dataset. If not set, we process the whole dataset.
- class TrainingPredictionSkewDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for Training & Prediction data skew detection. It specifies the training dataset sources and the skew detection parameters.
- skew_thresholds¶
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ThresholdConfig]
- attribution_score_skew_thresholds¶
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ThresholdConfig]
- default_skew_threshold¶
Skew anomaly detection threshold used by all features. When the per-feature thresholds are not set, this field can be used to specify a threshold for all features.
- class google.cloud.aiplatform_v1.types.ModelMonitoringStatsAnomalies(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Statistics and anomalies generated by Model Monitoring.
- objective¶
Model Monitoring Objective those stats and anomalies belonging to.
- feature_stats¶
A list of historical Stats and Anomalies generated for all Features.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies]
- class FeatureHistoricStatsAnomalies(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Historical Stats (and Anomalies) for a specific Feature.
- threshold¶
Threshold for anomaly detection.
- training_stats¶
Stats calculated for the Training Dataset.
- prediction_stats¶
A list of historical stats generated by different time window’s Prediction Dataset.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FeatureStatsAnomaly]
- class google.cloud.aiplatform_v1.types.ModelSourceInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Detail description of the source information of the model.
- source_type¶
Type of the model source.
- copy¶
If this Model is copy of another Model. If true then [source_type][google.cloud.aiplatform.v1.ModelSourceInfo.source_type] pertains to the original.
- Type:
- class ModelSourceType(value)[source]¶
Bases:
Enum
Source of the model. Different from
objective
field, thisModelSourceType
enum indicates the source from which the model was accessed or obtained, whereas theobjective
indicates the overall aim or function of this model.- Values:
- MODEL_SOURCE_TYPE_UNSPECIFIED (0):
Should not be used.
- AUTOML (1):
The Model is uploaded by automl training pipeline.
- CUSTOM (2):
The Model is uploaded by user or custom training pipeline.
- BQML (3):
The Model is registered and sync’ed from BigQuery ML.
- MODEL_GARDEN (4):
The Model is saved or tuned from Model Garden.
- GENIE (5):
The Model is saved or tuned from Genie.
- CUSTOM_TEXT_EMBEDDING (6):
The Model is uploaded by text embedding finetuning pipeline.
- MARKETPLACE (7):
The Model is saved or tuned from Marketplace.
- class google.cloud.aiplatform_v1.types.MutateDeployedIndexOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.MutateDeployedIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
- index_endpoint¶
Required. The name of the IndexEndpoint resource into which to deploy an Index. Format:
projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}
- Type:
- deployed_index¶
Required. The DeployedIndex to be updated within the IndexEndpoint. Currently, the updatable fields are [DeployedIndex.automatic_resources][google.cloud.aiplatform.v1.DeployedIndex.automatic_resources] and [DeployedIndex.dedicated_resources][google.cloud.aiplatform.v1.DeployedIndex.dedicated_resources]
- class google.cloud.aiplatform_v1.types.MutateDeployedIndexResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
- deployed_index¶
The DeployedIndex that had been updated in the IndexEndpoint.
- class google.cloud.aiplatform_v1.types.MutateDeployedModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1.EndpointService.MutateDeployedModel].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.MutateDeployedModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1.EndpointService.MutateDeployedModel].
- endpoint¶
Required. The name of the Endpoint resource into which to mutate a DeployedModel. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- deployed_model¶
Required. The DeployedModel to be mutated within the Endpoint. Only the following fields can be mutated:
min_replica_count
in either [DedicatedResources][google.cloud.aiplatform.v1.DedicatedResources] or [AutomaticResources][google.cloud.aiplatform.v1.AutomaticResources]max_replica_count
in either [DedicatedResources][google.cloud.aiplatform.v1.DedicatedResources] or [AutomaticResources][google.cloud.aiplatform.v1.AutomaticResources][autoscaling_metric_specs][google.cloud.aiplatform.v1.DedicatedResources.autoscaling_metric_specs]
disable_container_logging
(v1 only)enable_container_logging
(v1beta1 only)
- update_mask¶
Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.MutateDeployedModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1.EndpointService.MutateDeployedModel].
- deployed_model¶
The DeployedModel that’s being mutated.
- class google.cloud.aiplatform_v1.types.NasJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a Neural Architecture Search (NAS) job.
- display_name¶
Required. The display name of the NasJob. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- nas_job_spec¶
Required. The specification of a NasJob.
- nas_job_output¶
Output only. Output of the NasJob.
- state¶
Output only. The detailed state of the job.
- create_time¶
Output only. Time when the NasJob was created.
- start_time¶
Output only. Time when the NasJob for the first time entered the
JOB_STATE_RUNNING
state.
- end_time¶
Output only. Time when the NasJob entered any of the following states:
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
,JOB_STATE_CANCELLED
.
- update_time¶
Output only. Time when the NasJob was most recently updated.
- error¶
Output only. Only populated when job’s state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.
- Type:
google.rpc.status_pb2.Status
- labels¶
The labels with user-defined metadata to organize NasJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- encryption_spec¶
Customer-managed encryption key options for a NasJob. If this is set, then all resources created by the NasJob will be encrypted with the provided encryption key.
- enable_restricted_image_training¶
Optional. Enable a separation of Custom model training and restricted image training for tenant project.
- Type:
- class google.cloud.aiplatform_v1.types.NasJobOutput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a uCAIP NasJob output.
- multi_trial_job_output¶
Output only. The output of this multi-trial Neural Architecture Search (NAS) job.
This field is a member of oneof
output
.
- class MultiTrialJobOutput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The output of a multi-trial Neural Architecture Search (NAS) jobs.
- search_trials¶
Output only. List of NasTrials that were started as part of search stage.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NasTrial]
- train_trials¶
Output only. List of NasTrials that were started as part of train stage.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NasTrial]
- class google.cloud.aiplatform_v1.types.NasJobSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of a NasJob.
- multi_trial_algorithm_spec¶
The spec of multi-trial algorithms.
This field is a member of oneof
nas_algorithm_spec
.
- resume_nas_job_id¶
The ID of the existing NasJob in the same Project and Location which will be used to resume search. search_space_spec and nas_algorithm_spec are obtained from previous NasJob hence should not provide them again for this NasJob.
- Type:
- class MultiTrialAlgorithmSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The spec of multi-trial Neural Architecture Search (NAS).
- multi_trial_algorithm¶
The multi-trial Neural Architecture Search (NAS) algorithm type. Defaults to
REINFORCEMENT_LEARNING
.
- metric¶
Metric specs for the NAS job. Validation for this field is done at
multi_trial_algorithm_spec
field.
- search_trial_spec¶
Required. Spec for search trials.
- train_trial_spec¶
Spec for train trials. Top N [TrainTrialSpec.max_parallel_trial_count] search trials will be trained for every M [TrainTrialSpec.frequency] trials searched.
- class MetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a metric to optimize.
- goal¶
Required. The optimization goal of the metric.
- class MultiTrialAlgorithm(value)[source]¶
Bases:
Enum
The available types of multi-trial algorithms.
- Values:
- MULTI_TRIAL_ALGORITHM_UNSPECIFIED (0):
Defaults to
REINFORCEMENT_LEARNING
.- REINFORCEMENT_LEARNING (1):
The Reinforcement Learning Algorithm for Multi-trial Neural Architecture Search (NAS).
- GRID_SEARCH (2):
The Grid Search Algorithm for Multi-trial Neural Architecture Search (NAS).
- class SearchTrialSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represent spec for search trials.
- search_trial_job_spec¶
Required. The spec of a search trial job. The same spec applies to all search trials.
- max_trial_count¶
Required. The maximum number of Neural Architecture Search (NAS) trials to run.
- Type:
- class google.cloud.aiplatform_v1.types.NasTrial(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a uCAIP NasJob trial.
- state¶
Output only. The detailed state of the NasTrial.
- final_measurement¶
Output only. The final measurement containing the objective value.
- start_time¶
Output only. Time when the NasTrial was started.
- end_time¶
Output only. Time when the NasTrial’s status changed to
SUCCEEDED
orINFEASIBLE
.
- class State(value)[source]¶
Bases:
Enum
Describes a NasTrial state.
- Values:
- STATE_UNSPECIFIED (0):
The NasTrial state is unspecified.
- REQUESTED (1):
Indicates that a specific NasTrial has been requested, but it has not yet been suggested by the service.
- ACTIVE (2):
Indicates that the NasTrial has been suggested.
- STOPPING (3):
Indicates that the NasTrial should stop according to the service.
- SUCCEEDED (4):
Indicates that the NasTrial is completed successfully.
- INFEASIBLE (5):
Indicates that the NasTrial should not be attempted again. The service will set a NasTrial to INFEASIBLE when it’s done but missing the final_measurement.
- class google.cloud.aiplatform_v1.types.NasTrialDetail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a NasTrial details along with its parameters. If there is a corresponding train NasTrial, the train NasTrial is also returned.
- search_trial¶
The requested search NasTrial.
- train_trial¶
The train NasTrial corresponding to [search_trial][google.cloud.aiplatform.v1.NasTrialDetail.search_trial]. Only populated if [search_trial][google.cloud.aiplatform.v1.NasTrialDetail.search_trial] is used for training.
- class google.cloud.aiplatform_v1.types.NearestNeighborQuery(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A query to find a number of similar entities.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- entity_id¶
Optional. The entity id whose similar entities should be searched for. If embedding is set, search will use embedding instead of entity_id.
This field is a member of oneof
instance
.- Type:
- embedding¶
Optional. The embedding vector that be used for similar search.
This field is a member of oneof
instance
.
- neighbor_count¶
Optional. The number of similar entities to be retrieved from feature view for each query.
- Type:
- string_filters¶
Optional. The list of string filters.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NearestNeighborQuery.StringFilter]
- numeric_filters¶
Optional. The list of numeric filters.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NearestNeighborQuery.NumericFilter]
- per_crowding_attribute_neighbor_count¶
Optional. Crowding is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than sper_crowding_attribute_neighbor_count of the k neighbors returned have the same value of crowding_attribute. It’s used for improving result diversity.
- Type:
- parameters¶
Optional. Parameters that can be set to tune query on the fly.
- class Embedding(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The embedding vector.
- class NumericFilter(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Numeric filter is used to search a subset of the entities by using boolean rules on numeric columns. For example: Database Point 0: {name: “a” value_int: 42} {name: “b” value_float: 1.0} Database Point 1: {name: “a” value_int: 10} {name: “b” value_float: 2.0} Database Point 2: {name: “a” value_int: -1} {name: “b” value_float: 3.0} Query: {name: “a” value_int: 12 operator: LESS} // Matches Point 1, 2 {name: “b” value_float: 2.0 operator: EQUAL} // Matches Point 1
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- op¶
Optional. This MUST be specified for queries and must NOT be specified for database points.
This field is a member of oneof
_op
.
- class Operator(value)[source]¶
Bases:
Enum
Datapoints for which Operator is true relative to the query’s Value field will be allowlisted.
- Values:
- OPERATOR_UNSPECIFIED (0):
Unspecified operator.
- LESS (1):
Entities are eligible if their value is < the query’s.
- LESS_EQUAL (2):
Entities are eligible if their value is <= the query’s.
- EQUAL (3):
Entities are eligible if their value is == the query’s.
- GREATER_EQUAL (4):
Entities are eligible if their value is >= the query’s.
- GREATER (5):
Entities are eligible if their value is > the query’s.
- NOT_EQUAL (6):
Entities are eligible if their value is != the query’s.
- class Parameters(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Parameters that can be overrided in each query to tune query latency and recall.
- approximate_neighbor_candidates¶
Optional. The number of neighbors to find via approximate search before exact reordering is performed; if set, this value must be > neighbor_count.
- Type:
- class StringFilter(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
String filter is used to search a subset of the entities by using boolean rules on string columns. For example: if a query specifies string filter with ‘name = color, allow_tokens = {red, blue}, deny_tokens = {purple}’,’ then that query will match entities that are red or blue, but if those points are also purple, then they will be excluded even if they are red/blue. Only string filter is supported for now, numeric filter will be supported in the near future.
- class google.cloud.aiplatform_v1.types.NearestNeighborSearchOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation metadata with regard to Matching Engine Index.
- content_validation_stats¶
The validation stats of the content (per file) to be inserted or updated on the Matching Engine Index resource. Populated if contentsDeltaUri is provided as part of [Index.metadata][google.cloud.aiplatform.v1.Index.metadata]. Please note that, currently for those files that are broken or has unsupported file format, we will not have the stats for those files.
- class ContentValidationStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- partial_errors¶
The detail information of the partial failures encountered for those invalid records that couldn’t be parsed. Up to 50 partial errors will be reported.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NearestNeighborSearchOperationMetadata.RecordError]
- valid_sparse_record_count¶
Number of sparse records in this file that were successfully processed.
- Type:
- class RecordError(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- error_type¶
The error type of this record.
- error_message¶
A human-readable message that is shown to the user to help them fix the error. Note that this message may change from time to time, your code should check against error_type as the source of truth.
- Type:
- class RecordErrorType(value)[source]¶
Bases:
Enum
- Values:
- ERROR_TYPE_UNSPECIFIED (0):
Default, shall not be used.
- EMPTY_LINE (1):
The record is empty.
- INVALID_JSON_SYNTAX (2):
Invalid json format.
- INVALID_CSV_SYNTAX (3):
Invalid csv format.
- INVALID_AVRO_SYNTAX (4):
Invalid avro format.
- INVALID_EMBEDDING_ID (5):
The embedding id is not valid.
- EMBEDDING_SIZE_MISMATCH (6):
The size of the dense embedding vectors does not match with the specified dimension.
- NAMESPACE_MISSING (7):
The
namespace
field is missing.- PARSING_ERROR (8):
Generic catch-all error. Only used for validation failure where the root cause cannot be easily retrieved programmatically.
- DUPLICATE_NAMESPACE (9):
There are multiple restricts with the same
namespace
value.- OP_IN_DATAPOINT (10):
Numeric restrict has operator specified in datapoint.
- MULTIPLE_VALUES (11):
Numeric restrict has multiple values specified.
- INVALID_NUMERIC_VALUE (12):
Numeric restrict has invalid numeric value specified.
- INVALID_ENCODING (13):
File is not in UTF_8 format.
- INVALID_SPARSE_DIMENSIONS (14):
Error parsing sparse dimensions field.
- INVALID_TOKEN_VALUE (15):
Token restrict value is invalid.
- INVALID_SPARSE_EMBEDDING (16):
Invalid sparse embedding.
- INVALID_EMBEDDING (17):
Invalid dense embedding.
- class google.cloud.aiplatform_v1.types.NearestNeighbors(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Nearest neighbors for one query.
- neighbors¶
All its neighbors.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NearestNeighbors.Neighbor]
- class Neighbor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A neighbor of the query vector.
- entity_key_values¶
The attributes of the neighbor, e.g. filters, crowding and metadata Note that full entities are returned only when “return_full_entity” is set to true. Otherwise, only the “entity_id” and “distance” fields are populated.
- class google.cloud.aiplatform_v1.types.Neighbor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Neighbors for example-based explanations.
- class google.cloud.aiplatform_v1.types.NetworkSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Network spec.
- class google.cloud.aiplatform_v1.types.NfsMount(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a mount configuration for Network File System (NFS) to mount.
- path¶
Required. Source path exported from NFS server. Has to start with ‘/’, and combined with the ip address, it indicates the source mount path in the form of
server:path
- Type:
- class google.cloud.aiplatform_v1.types.NotebookEucConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The euc configuration of NotebookRuntimeTemplate.
- euc_disabled¶
Input only. Whether EUC is disabled in this NotebookRuntimeTemplate. In proto3, the default value of a boolean is false. In this way, by default EUC will be enabled for NotebookRuntimeTemplate.
- Type:
- bypass_actas_check¶
Output only. Whether ActAs check is bypassed for service account attached to the VM. If false, we need ActAs check for the default Compute Engine Service account. When a Runtime is created, a VM is allocated using Default Compute Engine Service Account. Any user requesting to use this Runtime requires Service Account User (ActAs) permission over this SA. If true, Runtime owner is using EUC and does not require the above permission as VM no longer use default Compute Engine SA, but a P4SA.
- Type:
- class google.cloud.aiplatform_v1.types.NotebookExecutionJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
NotebookExecutionJob represents an instance of a notebook execution.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- dataform_repository_source¶
The Dataform Repository pointing to a single file notebook repository.
This field is a member of oneof
notebook_source
.
- gcs_notebook_source¶
The Cloud Storage url pointing to the ipynb file. Format:
gs://bucket/notebook_file.ipynb
This field is a member of oneof
notebook_source
.
- direct_notebook_source¶
The contents of an input notebook file.
This field is a member of oneof
notebook_source
.
- notebook_runtime_template_resource_name¶
The NotebookRuntimeTemplate to source compute configuration from.
This field is a member of oneof
environment_spec
.- Type:
- custom_environment_spec¶
The custom compute configuration for an execution job.
This field is a member of oneof
environment_spec
.
- gcs_output_uri¶
The Cloud Storage location to upload the result to. Format:
gs://bucket-name
This field is a member of oneof
execution_sink
.- Type:
- execution_user¶
The user email to run the execution as. Only supported by Colab runtimes.
This field is a member of oneof
execution_identity
.- Type:
- service_account¶
The service account to run the execution as.
This field is a member of oneof
execution_identity
.- Type:
- name¶
Output only. The resource name of this NotebookExecutionJob. Format:
projects/{project_id}/locations/{location}/notebookExecutionJobs/{job_id}
- Type:
- display_name¶
The display name of the NotebookExecutionJob. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- execution_timeout¶
Max running time of the execution job in seconds (default 86400s / 24 hrs).
- schedule_resource_name¶
Output only. The Schedule resource name if this job is triggered by one. Format:
projects/{project_id}/locations/{location}/schedules/{schedule_id}
- Type:
- job_state¶
Output only. The state of the NotebookExecutionJob.
- status¶
Output only. Populated when the NotebookExecutionJob is completed. When there is an error during notebook execution, the error details are populated.
- Type:
google.rpc.status_pb2.Status
- create_time¶
Output only. Timestamp when this NotebookExecutionJob was created.
- update_time¶
Output only. Timestamp when this NotebookExecutionJob was most recently updated.
- labels¶
The labels with user-defined metadata to organize NotebookExecutionJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- encryption_spec¶
Customer-managed encryption key spec for the notebook execution job. This field is auto-populated if the [NotebookService.NotebookRuntimeTemplate][] has an encryption spec.
- class CustomEnvironmentSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Compute configuration to use for an execution job.
- machine_spec¶
The specification of a single machine for the execution job.
- persistent_disk_spec¶
The specification of a persistent disk to attach for the execution job.
- network_spec¶
The network configuration to use for the execution job.
- class DataformRepositorySource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Dataform Repository containing the input notebook.
- dataform_repository_resource_name¶
The resource name of the Dataform Repository. Format:
projects/{project_id}/locations/{location}/repositories/{repository_id}
- Type:
- class DirectNotebookSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The content of the input notebook in ipynb format.
- class GcsNotebookSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Cloud Storage uri for the input notebook.
- uri¶
The Cloud Storage uri pointing to the ipynb file. Format:
gs://bucket/notebook_file.ipynb
- Type:
- generation¶
The version of the Cloud Storage object to read. If unset, the current version of the object is read. See https://cloud.google.com/storage/docs/metadata#generation-number.
- Type:
- class google.cloud.aiplatform_v1.types.NotebookExecutionJobView(value)[source]¶
Bases:
Enum
Views for Get/List NotebookExecutionJob
- Values:
- NOTEBOOK_EXECUTION_JOB_VIEW_UNSPECIFIED (0):
When unspecified, the API defaults to the BASIC view.
- NOTEBOOK_EXECUTION_JOB_VIEW_BASIC (1):
Includes all fields except for direct notebook inputs.
- NOTEBOOK_EXECUTION_JOB_VIEW_FULL (2):
Includes all fields.
- class google.cloud.aiplatform_v1.types.NotebookIdleShutdownConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The idle shutdown configuration of NotebookRuntimeTemplate, which contains the idle_timeout as required field.
- idle_timeout¶
Required. Duration is accurate to the second. In Notebook, Idle Timeout is accurate to minute so the range of idle_timeout (second) is: 10 * 60 ~ 1440
- class google.cloud.aiplatform_v1.types.NotebookRuntime(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A runtime is a virtual machine allocated to a particular user for a particular Notebook file on temporary basis with lifetime limited to 24 hours.
- notebook_runtime_template_ref¶
Output only. The pointer to NotebookRuntimeTemplate this NotebookRuntime is created from.
- create_time¶
Output only. Timestamp when this NotebookRuntime was created.
- update_time¶
Output only. Timestamp when this NotebookRuntime was most recently updated.
- health_state¶
Output only. The health state of the NotebookRuntime.
- display_name¶
Required. The display name of the NotebookRuntime. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- service_account¶
Output only. The service account that the NotebookRuntime workload runs as.
- Type:
- runtime_state¶
Output only. The runtime (instance) state of the NotebookRuntime.
- labels¶
The labels with user-defined metadata to organize your NotebookRuntime.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one NotebookRuntime (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for NotebookRuntime:
“aiplatform.googleapis.com/notebook_runtime_gce_instance_id”: output only, its value is the Compute Engine instance id.
“aiplatform.googleapis.com/colab_enterprise_entry_service”: its value is either “bigquery” or “vertex”; if absent, it should be “vertex”. This is to describe the entry service, either BigQuery or Vertex.
- expiration_time¶
Output only. Timestamp when this NotebookRuntime will be expired:
- System Predefined NotebookRuntime: 24 hours
after creation. After expiration, system predifined runtime will be deleted.
- User created NotebookRuntime: 6 months after
last upgrade. After expiration, user created runtime will be stopped and allowed for upgrade.
- notebook_runtime_type¶
Output only. The type of the notebook runtime.
- idle_shutdown_config¶
Output only. The idle shutdown configuration of the notebook runtime.
- network_tags¶
Optional. The Compute Engine tags to add to runtime (see Tagging instances).
- Type:
MutableSequence[str]
- encryption_spec¶
Output only. Customer-managed encryption key spec for the notebook runtime.
- class HealthState(value)[source]¶
Bases:
Enum
The substate of the NotebookRuntime to display health information.
- Values:
- HEALTH_STATE_UNSPECIFIED (0):
Unspecified health state.
- HEALTHY (1):
NotebookRuntime is in healthy state. Applies to ACTIVE state.
- UNHEALTHY (2):
NotebookRuntime is in unhealthy state. Applies to ACTIVE state.
- class RuntimeState(value)[source]¶
Bases:
Enum
The substate of the NotebookRuntime to display state of runtime. The resource of NotebookRuntime is in ACTIVE state for these sub state.
- Values:
- RUNTIME_STATE_UNSPECIFIED (0):
Unspecified runtime state.
- RUNNING (1):
NotebookRuntime is in running state.
- BEING_STARTED (2):
NotebookRuntime is in starting state.
- BEING_STOPPED (3):
NotebookRuntime is in stopping state.
- STOPPED (4):
NotebookRuntime is in stopped state.
- BEING_UPGRADED (5):
NotebookRuntime is in upgrading state. It is in the middle of upgrading process.
- ERROR (100):
NotebookRuntime was unable to start/stop properly.
- INVALID (101):
NotebookRuntime is in invalid state. Cannot be recovered.
- class google.cloud.aiplatform_v1.types.NotebookRuntimeTemplate(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A template that specifies runtime configurations such as machine type, runtime version, network configurations, etc. Multiple runtimes can be created from a runtime template.
- display_name¶
Required. The display name of the NotebookRuntimeTemplate. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- machine_spec¶
Optional. Immutable. The specification of a single machine for the template.
- data_persistent_disk_spec¶
Optional. The specification of [persistent disk][https://cloud.google.com/compute/docs/disks/persistent-disks] attached to the runtime as data disk storage.
- network_spec¶
Optional. Network spec.
- service_account¶
The service account that the runtime workload runs as. You can use any service account within the same project, but you must have the service account user permission to use the instance.
If not specified, the Compute Engine default service account is used.
- Type:
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- labels¶
The labels with user-defined metadata to organize the NotebookRuntimeTemplates.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- idle_shutdown_config¶
The idle shutdown configuration of NotebookRuntimeTemplate. This config will only be set when idle shutdown is enabled.
- euc_config¶
EUC configuration of the NotebookRuntimeTemplate.
- create_time¶
Output only. Timestamp when this NotebookRuntimeTemplate was created.
- update_time¶
Output only. Timestamp when this NotebookRuntimeTemplate was most recently updated.
- notebook_runtime_type¶
Optional. Immutable. The type of the notebook runtime template.
- shielded_vm_config¶
Optional. Immutable. Runtime Shielded VM spec.
- network_tags¶
Optional. The Compute Engine tags to add to runtime (see Tagging instances).
- Type:
MutableSequence[str]
- encryption_spec¶
Customer-managed encryption key spec for the notebook runtime.
- class google.cloud.aiplatform_v1.types.NotebookRuntimeTemplateRef(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Points to a NotebookRuntimeTemplateRef.
- class google.cloud.aiplatform_v1.types.NotebookRuntimeType(value)[source]¶
Bases:
Enum
Represents a notebook runtime type.
- Values:
- NOTEBOOK_RUNTIME_TYPE_UNSPECIFIED (0):
Unspecified notebook runtime type, NotebookRuntimeType will default to USER_DEFINED.
- USER_DEFINED (1):
runtime or template with coustomized configurations from user.
- ONE_CLICK (2):
runtime or template with system defined configurations.
- class google.cloud.aiplatform_v1.types.PSCAutomationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
PSC config that is used to automatically create forwarding rule via ServiceConnectionMap.
- class google.cloud.aiplatform_v1.types.PairwiseChoice(value)[source]¶
Bases:
Enum
Pairwise prediction autorater preference.
- Values:
- PAIRWISE_CHOICE_UNSPECIFIED (0):
Unspecified prediction choice.
- BASELINE (1):
Baseline prediction wins
- CANDIDATE (2):
Candidate prediction wins
- TIE (3):
Winner cannot be determined
- class google.cloud.aiplatform_v1.types.PairwiseMetricInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for pairwise metric.
- metric_spec¶
Required. Spec for pairwise metric.
- instance¶
Required. Pairwise metric instance.
- class google.cloud.aiplatform_v1.types.PairwiseMetricInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Pairwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
- class google.cloud.aiplatform_v1.types.PairwiseMetricResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise metric result.
- pairwise_choice¶
Output only. Pairwise metric choice.
- class google.cloud.aiplatform_v1.types.PairwiseMetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise metric.
- class google.cloud.aiplatform_v1.types.PairwiseQuestionAnsweringQualityInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for pairwise question answering quality metric.
- metric_spec¶
Required. Spec for pairwise question answering quality score metric.
- instance¶
Required. Pairwise question answering quality instance.
- class google.cloud.aiplatform_v1.types.PairwiseQuestionAnsweringQualityInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise question answering quality instance.
- prediction¶
Required. Output of the candidate model.
This field is a member of oneof
_prediction
.- Type:
- baseline_prediction¶
Required. Output of the baseline model.
This field is a member of oneof
_baseline_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.PairwiseQuestionAnsweringQualityResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise question answering quality result.
- pairwise_choice¶
Output only. Pairwise question answering prediction choice.
- class google.cloud.aiplatform_v1.types.PairwiseQuestionAnsweringQualitySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise question answering quality score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute question answering quality.
- Type:
- class google.cloud.aiplatform_v1.types.PairwiseSummarizationQualityInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for pairwise summarization quality metric.
- metric_spec¶
Required. Spec for pairwise summarization quality score metric.
- instance¶
Required. Pairwise summarization quality instance.
- class google.cloud.aiplatform_v1.types.PairwiseSummarizationQualityInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise summarization quality instance.
- prediction¶
Required. Output of the candidate model.
This field is a member of oneof
_prediction
.- Type:
- baseline_prediction¶
Required. Output of the baseline model.
This field is a member of oneof
_baseline_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.PairwiseSummarizationQualityResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise summarization quality result.
- pairwise_choice¶
Output only. Pairwise summarization prediction choice.
- class google.cloud.aiplatform_v1.types.PairwiseSummarizationQualitySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pairwise summarization quality score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute pairwise summarization quality.
- Type:
- class google.cloud.aiplatform_v1.types.Part(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A datatype containing media that is part of a multi-part
Content
message.A
Part
consists of data which has an associated datatype. APart
can only contain one of the accepted types inPart.data
.A
Part
must have a fixed IANA MIME type identifying the type and subtype of the media ifinline_data
orfile_data
field is filled with raw bytes.This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- function_call¶
Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
This field is a member of oneof
data
.
- function_response¶
Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
This field is a member of oneof
data
.
- class google.cloud.aiplatform_v1.types.PauseModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.PauseModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.PauseModelDeploymentMonitoringJob].
- class google.cloud.aiplatform_v1.types.PauseScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.PauseSchedule][google.cloud.aiplatform.v1.ScheduleService.PauseSchedule].
- class google.cloud.aiplatform_v1.types.PersistentDiskSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of [persistent disk][https://cloud.google.com/compute/docs/disks/persistent-disks] options.
- disk_type¶
Type of the disk (default is “pd-standard”). Valid values: “pd-ssd” (Persistent Disk Solid State Drive) “pd-standard” (Persistent Disk Hard Disk Drive) “pd-balanced” (Balanced Persistent Disk) “pd-extreme” (Extreme Persistent Disk)
- Type:
- class google.cloud.aiplatform_v1.types.PersistentResource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents long-lasting resources that are dedicated to users to runs custom workloads. A PersistentResource can have multiple node pools and each node pool can have its own machine spec.
- display_name¶
Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- resource_pools¶
Required. The spec of the pools of different resources.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ResourcePool]
- state¶
Output only. The detailed state of a Study.
- error¶
Output only. Only populated when persistent resource’s state is
STOPPING
orERROR
.- Type:
google.rpc.status_pb2.Status
- create_time¶
Output only. Time when the PersistentResource was created.
- start_time¶
Output only. Time when the PersistentResource for the first time entered the
RUNNING
state.
- update_time¶
Output only. Time when the PersistentResource was most recently updated.
- labels¶
Optional. The labels with user-defined metadata to organize PersistentResource.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- network¶
Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the resources aren’t peered with any network.
- Type:
- encryption_spec¶
Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- resource_runtime_spec¶
Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- resource_runtime¶
Output only. Runtime information of the Persistent Resource.
- reserved_ip_ranges¶
Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource.
If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network.
Example: [‘vertex-ai-ip-range’].
- Type:
MutableSequence[str]
- class State(value)[source]¶
Bases:
Enum
Describes the PersistentResource state.
- Values:
- STATE_UNSPECIFIED (0):
Not set.
- PROVISIONING (1):
The PROVISIONING state indicates the persistent resources is being created.
- RUNNING (3):
The RUNNING state indicates the persistent resource is healthy and fully usable.
- STOPPING (4):
The STOPPING state indicates the persistent resource is being deleted.
- ERROR (5):
The ERROR state indicates the persistent resource may be unusable. Details can be found in the
error
field.- REBOOTING (6):
The REBOOTING state indicates the persistent resource is being rebooted (PR is not available right now but is expected to be ready again later).
- UPDATING (7):
The UPDATING state indicates the persistent resource is being updated.
- class google.cloud.aiplatform_v1.types.PipelineFailurePolicy(value)[source]¶
Bases:
Enum
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion.
- Values:
- PIPELINE_FAILURE_POLICY_UNSPECIFIED (0):
Default value, and follows fail slow behavior.
- PIPELINE_FAILURE_POLICY_FAIL_SLOW (1):
Indicates that the pipeline should continue to run until all possible tasks have been scheduled and completed.
- PIPELINE_FAILURE_POLICY_FAIL_FAST (2):
Indicates that the pipeline should stop scheduling new tasks after a task has failed.
- class google.cloud.aiplatform_v1.types.PipelineJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An instance of a machine learning PipelineJob.
- display_name¶
The display name of the Pipeline. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- create_time¶
Output only. Pipeline creation time.
- start_time¶
Output only. Pipeline start time.
- end_time¶
Output only. Pipeline end time.
- update_time¶
Output only. Timestamp when this PipelineJob was most recently updated.
- pipeline_spec¶
The spec of the pipeline.
- state¶
Output only. The detailed state of the job.
- job_detail¶
Output only. The details of pipeline run. Not available in the list view.
- error¶
Output only. The error that occurred during pipeline execution. Only populated when the pipeline’s state is FAILED or CANCELLED.
- Type:
google.rpc.status_pb2.Status
- labels¶
The labels with user-defined metadata to organize PipelineJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
Note there is some reserved label key for Vertex AI Pipelines.
vertex-ai-pipelines-run-billing-id
, user set value will get overrided.
- runtime_config¶
Runtime config of the pipeline.
- encryption_spec¶
Customer-managed encryption key spec for a pipelineJob. If set, this PipelineJob and all of its sub-resources will be secured by this key.
- service_account¶
The service account that the pipeline workload runs as. If not specified, the Compute Engine default service account in the project will be used. See https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
Users starting the pipeline must have the
iam.serviceAccounts.actAs
permission on this service account.- Type:
- network¶
The full name of the Compute Engine network to which the Pipeline Job’s workload should be peered. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.Private services access must already be configured for the network. Pipeline job will apply the network configuration to the Google Cloud resources being launched, if applied, such as Vertex AI Training or Dataflow job. If left unspecified, the workload is not peered with any network.
- Type:
- reserved_ip_ranges¶
A list of names for the reserved ip ranges under the VPC network that can be used for this Pipeline Job’s workload.
If set, we will deploy the Pipeline Job’s workload within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network.
Example: [‘vertex-ai-ip-range’].
- Type:
MutableSequence[str]
- template_uri¶
A template uri from where the [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec], if empty, will be downloaded. Currently, only uri from Vertex Template Registry & Gallery is supported. Reference to https://cloud.google.com/vertex-ai/docs/pipelines/create-pipeline-template.
- Type:
- template_metadata¶
Output only. Pipeline template metadata. Will fill up fields if [PipelineJob.template_uri][google.cloud.aiplatform.v1.PipelineJob.template_uri] is from supported template registry.
- schedule_name¶
Output only. The schedule resource name. Only returned if the Pipeline is created by Schedule API.
- Type:
- preflight_validations¶
Optional. Whether to do component level validations before job creation.
- Type:
- class RuntimeConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The runtime config of a PipelineJob.
- parameters¶
Deprecated. Use [RuntimeConfig.parameter_values][google.cloud.aiplatform.v1.PipelineJob.RuntimeConfig.parameter_values] instead. The runtime parameters of the PipelineJob. The parameters will be passed into [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec] to replace the placeholders at runtime. This field is used by pipelines built using
PipelineJob.pipeline_spec.schema_version
2.0.0 or lower, such as pipelines built using Kubeflow Pipelines SDK 1.8 or lower.- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.Value]
- gcs_output_directory¶
Required. A path in a Cloud Storage bucket, which will be treated as the root output directory of the pipeline. It is used by the system to generate the paths of output artifacts. The artifact paths are generated with a sub-path pattern
{job_id}/{task_id}/{output_key}
under the specified output directory. The service account specified in this pipeline must have thestorage.objects.get
andstorage.objects.create
permissions for this bucket.- Type:
- parameter_values¶
The runtime parameters of the PipelineJob. The parameters will be passed into [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec] to replace the placeholders at runtime. This field is used by pipelines built using
PipelineJob.pipeline_spec.schema_version
2.1.0, such as pipelines built using Kubeflow Pipelines SDK 1.9 or higher and the v2 DSL.- Type:
MutableMapping[str, google.protobuf.struct_pb2.Value]
- failure_policy¶
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion.
- input_artifacts¶
The runtime artifacts of the PipelineJob. The key will be the input artifact name and the value would be one of the InputArtifact.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.PipelineJob.RuntimeConfig.InputArtifact]
- class InputArtifact(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The type of an input artifact.
- artifact_id¶
Artifact resource id from MLMD. Which is the last portion of an artifact resource name:
projects/{project}/locations/{location}/metadataStores/default/artifacts/{artifact_id}
. The artifact must stay within the same project, location and default metadatastore as the pipeline.This field is a member of oneof
kind
.- Type:
- class google.cloud.aiplatform_v1.types.PipelineJobDetail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The runtime detail of PipelineJob.
- pipeline_context¶
Output only. The context of the pipeline.
- pipeline_run_context¶
Output only. The context of the current pipeline run.
- task_details¶
Output only. The runtime details of the tasks under the pipeline.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PipelineTaskDetail]
- class google.cloud.aiplatform_v1.types.PipelineState(value)[source]¶
Bases:
Enum
Describes the state of a pipeline.
- Values:
- PIPELINE_STATE_UNSPECIFIED (0):
The pipeline state is unspecified.
- PIPELINE_STATE_QUEUED (1):
The pipeline has been created or resumed, and processing has not yet begun.
- PIPELINE_STATE_PENDING (2):
The service is preparing to run the pipeline.
- PIPELINE_STATE_RUNNING (3):
The pipeline is in progress.
- PIPELINE_STATE_SUCCEEDED (4):
The pipeline completed successfully.
- PIPELINE_STATE_FAILED (5):
The pipeline failed.
- PIPELINE_STATE_CANCELLING (6):
The pipeline is being cancelled. From this state, the pipeline may only go to either PIPELINE_STATE_SUCCEEDED, PIPELINE_STATE_FAILED or PIPELINE_STATE_CANCELLED.
- PIPELINE_STATE_CANCELLED (7):
The pipeline has been cancelled.
- PIPELINE_STATE_PAUSED (8):
The pipeline has been stopped, and can be resumed.
- class google.cloud.aiplatform_v1.types.PipelineTaskDetail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The runtime detail of a task execution.
- parent_task_id¶
Output only. The id of the parent task if the task is within a component scope. Empty if the task is at the root level.
- Type:
- task_name¶
Output only. The user specified name of the task that is defined in [pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec].
- Type:
- create_time¶
Output only. Task create time.
- start_time¶
Output only. Task start time.
- end_time¶
Output only. Task end time.
- executor_detail¶
Output only. The detailed execution info.
- state¶
Output only. State of the task.
- execution¶
Output only. The execution metadata of the task.
- error¶
Output only. The error that occurred during task execution. Only populated when the task’s state is FAILED or CANCELLED.
- Type:
google.rpc.status_pb2.Status
- pipeline_task_status¶
Output only. A list of task status. This field keeps a record of task status evolving over time.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PipelineTaskDetail.PipelineTaskStatus]
- inputs¶
Output only. The runtime input artifacts of the task.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.PipelineTaskDetail.ArtifactList]
- outputs¶
Output only. The runtime output artifacts of the task.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.PipelineTaskDetail.ArtifactList]
- class ArtifactList(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of artifact metadata.
- artifacts¶
Output only. A list of artifact metadata.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Artifact]
- class PipelineTaskStatus(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A single record of the task status.
- update_time¶
Output only. Update time of this status.
- state¶
Output only. The state of the task.
- error¶
Output only. The error that occurred during the state. May be set when the state is any of the non-final state (PENDING/RUNNING/CANCELLING) or FAILED state. If the state is FAILED, the error here is final and not going to be retried. If the state is a non-final state, the error indicates a system-error being retried.
- Type:
google.rpc.status_pb2.Status
- class State(value)[source]¶
Bases:
Enum
Specifies state of TaskExecution
- Values:
- STATE_UNSPECIFIED (0):
Unspecified.
- PENDING (1):
Specifies pending state for the task.
- RUNNING (2):
Specifies task is being executed.
- SUCCEEDED (3):
Specifies task completed successfully.
- CANCEL_PENDING (4):
Specifies Task cancel is in pending state.
- CANCELLING (5):
Specifies task is being cancelled.
- CANCELLED (6):
Specifies task was cancelled.
- FAILED (7):
Specifies task failed.
- SKIPPED (8):
Specifies task was skipped due to cache hit.
- NOT_TRIGGERED (9):
Specifies that the task was not triggered because the task’s trigger policy is not satisfied. The trigger policy is specified in the
condition
field of [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec].
- class google.cloud.aiplatform_v1.types.PipelineTaskExecutorDetail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The runtime detail of a pipeline executor.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- container_detail¶
Output only. The detailed info for a container executor.
This field is a member of oneof
details
.
- custom_job_detail¶
Output only. The detailed info for a custom job executor.
This field is a member of oneof
details
.
- class ContainerDetail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The detail of a container execution. It contains the job names of the lifecycle of a container execution.
- main_job¶
Output only. The name of the [CustomJob][google.cloud.aiplatform.v1.CustomJob] for the main container execution.
- Type:
- pre_caching_check_job¶
Output only. The name of the [CustomJob][google.cloud.aiplatform.v1.CustomJob] for the pre-caching-check container execution. This job will be available if the [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec] specifies the
pre_caching_check
hook in the lifecycle events.- Type:
- failed_main_jobs¶
Output only. The names of the previously failed [CustomJob][google.cloud.aiplatform.v1.CustomJob] for the main container executions. The list includes the all attempts in chronological order.
- Type:
MutableSequence[str]
- failed_pre_caching_check_jobs¶
Output only. The names of the previously failed [CustomJob][google.cloud.aiplatform.v1.CustomJob] for the pre-caching-check container executions. This job will be available if the [PipelineJob.pipeline_spec][google.cloud.aiplatform.v1.PipelineJob.pipeline_spec] specifies the
pre_caching_check
hook in the lifecycle events. The list includes the all attempts in chronological order.- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.PipelineTemplateMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Pipeline template metadata if [PipelineJob.template_uri][google.cloud.aiplatform.v1.PipelineJob.template_uri] is from supported template registry. Currently, the only supported registry is Artifact Registry.
- class google.cloud.aiplatform_v1.types.PointwiseMetricInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for pointwise metric.
- metric_spec¶
Required. Spec for pointwise metric.
- instance¶
Required. Pointwise metric instance.
- class google.cloud.aiplatform_v1.types.PointwiseMetricInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Pointwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
- class google.cloud.aiplatform_v1.types.PointwiseMetricResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pointwise metric result.
- class google.cloud.aiplatform_v1.types.PointwiseMetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for pointwise metric.
- class google.cloud.aiplatform_v1.types.Port(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a network port in a container.
- class google.cloud.aiplatform_v1.types.PredefinedSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns input data to training, validation, and test sets based on the value of a provided key.
Supported only for tabular Datasets.
- key¶
Required. The key is a name of one of the Dataset’s data columns. The value of the key (either the label’s value or value in the column) must be one of {
training
,validation
,test
}, and it defines to which set the given piece of data is assigned. If for a piece of data the key is not present or has an invalid value, that piece is ignored by the pipeline.- Type:
- class google.cloud.aiplatform_v1.types.PredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- instances¶
Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint’s DeployedModels’ [Model’s][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- parameters¶
The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint’s DeployedModels’ [Model’s ][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [parameters_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri].
- class google.cloud.aiplatform_v1.types.PredictRequestResponseLoggingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for logging request-response to a BigQuery table.
- sampling_rate¶
Percentage of requests to be logged, expressed as a fraction in range(0,1].
- Type:
- bigquery_destination¶
BigQuery table for logging. If only given a project, a new dataset will be created with name
logging_<endpoint-display-name>_<endpoint-id>
where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores). If no table name is given, a new table will be created with namerequest_response_logging
- class google.cloud.aiplatform_v1.types.PredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
- predictions¶
The predictions that are the output of the predictions call. The schema of any single prediction may be specified via Endpoint’s DeployedModels’ [Model’s ][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1.Model.predict_schemata] [prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri].
- Type:
MutableSequence[google.protobuf.struct_pb2.Value]
- model¶
Output only. The resource name of the Model which is deployed as the DeployedModel that this prediction hits.
- Type:
- model_version_id¶
Output only. The version ID of the Model which is deployed as the DeployedModel that this prediction hits.
- Type:
- model_display_name¶
Output only. The [display name][google.cloud.aiplatform.v1.Model.display_name] of the Model which is deployed as the DeployedModel that this prediction hits.
- Type:
- metadata¶
Output only. Request-level metadata returned by the model. The metadata type will be dependent upon the model implementation.
- class google.cloud.aiplatform_v1.types.PredictSchemata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains the schemata used in Model’s predictions and explanations via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict], [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain] and [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
- instance_schema_uri¶
Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in [PredictRequest.instances][google.cloud.aiplatform.v1.PredictRequest.instances], [ExplainRequest.instances][google.cloud.aiplatform.v1.ExplainRequest.instances] and [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- parameters_schema_uri¶
Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via [PredictRequest.parameters][google.cloud.aiplatform.v1.PredictRequest.parameters], [ExplainRequest.parameters][google.cloud.aiplatform.v1.ExplainRequest.parameters] and [BatchPredictionJob.model_parameters][google.cloud.aiplatform.v1.BatchPredictionJob.model_parameters]. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- prediction_schema_uri¶
Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions], [ExplainResponse.explanations][google.cloud.aiplatform.v1.ExplainResponse.explanations], and [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- class google.cloud.aiplatform_v1.types.Presets(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Preset configuration for example-based explanations
- query¶
Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to
PRECISE
.This field is a member of oneof
_query
.
- modality¶
The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
- class google.cloud.aiplatform_v1.types.PrivateEndpoints(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
PrivateEndpoints proto is used to provide paths for users to send requests privately. To send request via private service access, use predict_http_uri, explain_http_uri or health_http_uri. To send request via private service connect, use service_attachment.
- class google.cloud.aiplatform_v1.types.PrivateServiceConnectConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents configuration for private service connect.
- enable_private_service_connect¶
Required. If true, expose the IndexEndpoint via private service connect.
- Type:
- class google.cloud.aiplatform_v1.types.Probe(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.
- exec_¶
ExecAction probes the health of a container by executing a command.
This field is a member of oneof
probe_type
.
- period_seconds¶
How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds.
Maps to Kubernetes probe argument ‘periodSeconds’.
- Type:
- timeout_seconds¶
Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds.
Maps to Kubernetes probe argument ‘timeoutSeconds’.
- Type:
- class ExecAction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
ExecAction specifies a command to execute.
- command¶
Command is the command line to execute inside the container, the working directory for the command is root (‘/’) in the container’s filesystem. The command is simply exec’d, it is not run inside a shell, so traditional shell instructions (‘|’, etc) won’t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.PscAutomatedEndpoints(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
PscAutomatedEndpoints defines the output of the forwarding rule automatically created by each PscAutomationConfig.
- class google.cloud.aiplatform_v1.types.PublisherModel(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A Model Garden Publisher Model.
- version_id¶
Output only. Immutable. The version ID of the PublisherModel. A new version is committed when a new model version is uploaded under an existing model id. It is an auto-incrementing decimal number in string representation.
- Type:
- open_source_category¶
Required. Indicates the open source category of the publisher model.
- supported_actions¶
Optional. Supported call-to-action options.
- frameworks¶
Optional. Additional information about the model’s Frameworks.
- Type:
MutableSequence[str]
- launch_stage¶
Optional. Indicates the launch stage of the model.
- version_state¶
Optional. Indicates the state of the model version.
- publisher_model_template¶
Optional. Output only. Immutable. Used to indicate this model has a publisher model and provide the template of the publisher model resource name.
- Type:
- predict_schemata¶
Optional. The schemata that describes formats of the PublisherModel’s predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
- class CallToAction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Actions could take on this Publisher Model.
- view_rest_api¶
Optional. To view Rest API docs.
- open_notebook¶
Optional. Open notebook of the PublisherModel.
- open_notebooks¶
Optional. Open notebooks of the PublisherModel.
This field is a member of oneof
_open_notebooks
.
- create_application¶
Optional. Create application using the PublisherModel.
- open_fine_tuning_pipeline¶
Optional. Open fine-tuning pipeline of the PublisherModel.
- open_fine_tuning_pipelines¶
Optional. Open fine-tuning pipelines of the PublisherModel.
This field is a member of oneof
_open_fine_tuning_pipelines
.
- open_prompt_tuning_pipeline¶
Optional. Open prompt-tuning pipeline of the PublisherModel.
- open_genie¶
Optional. Open Genie / Playground.
- deploy¶
Optional. Deploy the PublisherModel to Vertex Endpoint.
- deploy_gke¶
Optional. Deploy PublisherModel to Google Kubernetes Engine.
- open_generation_ai_studio¶
Optional. Open in Generation AI Studio.
- request_access¶
Optional. Request for access.
- open_evaluation_pipeline¶
Optional. Open evaluation pipeline of the PublisherModel.
- class Deploy(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Model metadata that is needed for UploadModel or DeployModel/CreateEndpoint requests.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- dedicated_resources¶
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
This field is a member of oneof
prediction_resources
.
- automatic_resources¶
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
This field is a member of oneof
prediction_resources
.
The resource name of the shared DeploymentResourcePool to deploy on. Format:
projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
This field is a member of oneof
prediction_resources
.- Type:
- large_model_reference¶
Optional. Large model reference. When this is set, model_artifact_spec is not needed.
- container_spec¶
Optional. The specification of the container that is to be used when deploying this Model in Vertex AI. Not present for Large Models.
- artifact_uri¶
Optional. The path to the directory containing the Model artifact and any of its supporting files.
- Type:
- deploy_task_name¶
Optional. The name of the deploy task (e.g., “text to image generation”).
This field is a member of oneof
_deploy_task_name
.- Type:
- deploy_metadata¶
Optional. Metadata information about this deployment config.
This field is a member of oneof
_deploy_metadata
.
- public_artifact_uri¶
Optional. The signed URI for ephemeral Cloud Storage access to model artifact.
- Type:
- class DeployMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information about the deployment for managing deployment config.
- labels¶
Optional. Labels for the deployment. For managing deployment config like verifying, source of deployment config, etc.
- class DeployGke(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configurations for PublisherModel GKE deployment
- class OpenFineTuningPipelines(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Open fine tuning pipelines.
- fine_tuning_pipelines¶
Required. Regional resource references to fine tuning pipelines.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PublisherModel.CallToAction.RegionalResourceReferences]
- class OpenNotebooks(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Open notebooks.
- notebooks¶
Required. Regional resource references to notebooks.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.PublisherModel.CallToAction.RegionalResourceReferences]
- class RegionalResourceReferences(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The regional resource name or the URI. Key is region, e.g., us-central1, europe-west2, global, etc..
- references¶
Required.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.PublisherModel.ResourceReference]
- resource_title¶
Optional. Title of the resource.
This field is a member of oneof
_resource_title
.- Type:
- resource_use_case¶
Optional. Use case (CUJ) of the resource.
This field is a member of oneof
_resource_use_case
.- Type:
- class Documentation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A named piece of documentation.
- title¶
Required. E.g., OVERVIEW, USE CASES, DOCUMENTATION, SDK & SAMPLES, JAVA, NODE.JS, etc..
- Type:
- class LaunchStage(value)[source]¶
Bases:
Enum
An enum representing the launch stage of a PublisherModel.
- Values:
- LAUNCH_STAGE_UNSPECIFIED (0):
The model launch stage is unspecified.
- EXPERIMENTAL (1):
Used to indicate the PublisherModel is at Experimental launch stage, available to a small set of customers.
- PRIVATE_PREVIEW (2):
Used to indicate the PublisherModel is at Private Preview launch stage, only available to a small set of customers, although a larger set of customers than an Experimental launch. Previews are the first launch stage used to get feedback from customers.
- PUBLIC_PREVIEW (3):
Used to indicate the PublisherModel is at Public Preview launch stage, available to all customers, although not supported for production workloads.
- GA (4):
Used to indicate the PublisherModel is at GA launch stage, available to all customers and ready for production workload.
- class OpenSourceCategory(value)[source]¶
Bases:
Enum
An enum representing the open source category of a PublisherModel.
- Values:
- OPEN_SOURCE_CATEGORY_UNSPECIFIED (0):
The open source category is unspecified, which should not be used.
- PROPRIETARY (1):
Used to indicate the PublisherModel is not open sourced.
- GOOGLE_OWNED_OSS_WITH_GOOGLE_CHECKPOINT (2):
Used to indicate the PublisherModel is a Google-owned open source model w/ Google checkpoint.
- THIRD_PARTY_OWNED_OSS_WITH_GOOGLE_CHECKPOINT (3):
Used to indicate the PublisherModel is a 3p-owned open source model w/ Google checkpoint.
- GOOGLE_OWNED_OSS (4):
Used to indicate the PublisherModel is a Google-owned pure open source model.
- THIRD_PARTY_OWNED_OSS (5):
Used to indicate the PublisherModel is a 3p-owned pure open source model.
- class ResourceReference(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Reference to a resource.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class VersionState(value)[source]¶
Bases:
Enum
An enum representing the state of the PublicModelVersion.
- Values:
- VERSION_STATE_UNSPECIFIED (0):
The version state is unspecified.
- VERSION_STATE_STABLE (1):
Used to indicate the version is stable.
- VERSION_STATE_UNSTABLE (2):
Used to indicate the version is unstable.
- class google.cloud.aiplatform_v1.types.PublisherModelView(value)[source]¶
Bases:
Enum
View enumeration of PublisherModel.
- Values:
- PUBLISHER_MODEL_VIEW_UNSPECIFIED (0):
The default / unset value. The API will default to the BASIC view.
- PUBLISHER_MODEL_VIEW_BASIC (1):
Include basic metadata about the publisher model, but not the full contents.
- PUBLISHER_MODEL_VIEW_FULL (2):
Include everything.
- PUBLISHER_MODEL_VERSION_VIEW_BASIC (3):
Include: VersionId, ModelVersionExternalName, and SupportedActions.
- class google.cloud.aiplatform_v1.types.PurgeArtifactsMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
- generic_metadata¶
Operation metadata for purging Artifacts.
- class google.cloud.aiplatform_v1.types.PurgeArtifactsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
- parent¶
Required. The metadata store to purge Artifacts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- filter¶
Required. A required filter matching the Artifacts to be purged. E.g.,
update_time <= 2020-11-19T11:30:00-04:00
.- Type:
- class google.cloud.aiplatform_v1.types.PurgeArtifactsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
- purge_count¶
The number of Artifacts that this request deleted (or, if
force
is false, the number of Artifacts that will be deleted). This can be an estimate.- Type:
- class google.cloud.aiplatform_v1.types.PurgeContextsMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
- generic_metadata¶
Operation metadata for purging Contexts.
- class google.cloud.aiplatform_v1.types.PurgeContextsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
- parent¶
Required. The metadata store to purge Contexts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- filter¶
Required. A required filter matching the Contexts to be purged. E.g.,
update_time <= 2020-11-19T11:30:00-04:00
.- Type:
- class google.cloud.aiplatform_v1.types.PurgeContextsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
- purge_count¶
The number of Contexts that this request deleted (or, if
force
is false, the number of Contexts that will be deleted). This can be an estimate.- Type:
- class google.cloud.aiplatform_v1.types.PurgeExecutionsMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
- generic_metadata¶
Operation metadata for purging Executions.
- class google.cloud.aiplatform_v1.types.PurgeExecutionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
- parent¶
Required. The metadata store to purge Executions from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
- Type:
- filter¶
Required. A required filter matching the Executions to be purged. E.g.,
update_time <= 2020-11-19T11:30:00-04:00
.- Type:
- class google.cloud.aiplatform_v1.types.PurgeExecutionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
- purge_count¶
The number of Executions that this request deleted (or, if
force
is false, the number of Executions that will be deleted). This can be an estimate.- Type:
- class google.cloud.aiplatform_v1.types.PythonPackageSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The spec of a Python packaged code.
- executor_image_uri¶
Required. The URI of a container image in Artifact Registry that will run the provided Python package. Vertex AI provides a wide range of executor images with pre-installed packages to meet users’ various use cases. See the list of pre-built containers for training. You must use an image from this list.
- Type:
- package_uris¶
Required. The Google Cloud Storage location of the Python package files which are the training program and its dependent packages. The maximum number of package URIs is 100.
- Type:
MutableSequence[str]
- env¶
Environment variables to be passed to the python module. Maximum limit is 100.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.EnvVar]
- class google.cloud.aiplatform_v1.types.QueryArtifactLineageSubgraphRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryArtifactLineageSubgraph].
- artifact¶
Required. The resource name of the Artifact whose Lineage needs to be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
- Type:
- max_hops¶
Specifies the size of the lineage graph in terms of number of hops from the specified artifact. Negative Value: INVALID_ARGUMENT error is returned 0: Only input artifact is returned. No value: Transitive closure is performed to return the complete graph.
- Type:
- filter¶
Filter specifying the boolean condition for the Artifacts to satisfy in order to be part of the Lineage Subgraph. The syntax to define filter query is based on https://google.aip.dev/160. The supported set of filters include the following:
Attribute filtering: For example:
display_name = "test"
Supported fields include:name
,display_name
,uri
,state
,schema_title
,create_time
, andupdate_time
. Time fields, such ascreate_time
andupdate_time
, require values specified in RFC-3339 format. For example:create_time = "2020-11-19T11:30:00-04:00"
Metadata field: To filter on metadata fields use traversal operation as follows:
metadata.<field_name>.<type_value>
. For example:metadata.field_1.number_value = 10.0
In case the field name contains special characters (such as colon), one can embed it inside double quote. For example:metadata."field:1".number_value = 10.0
Each of the above supported filter types can be combined together using logical operators (
AND
&OR
). Maximum nested expression depth allowed is 5.For example:
display_name = "test" AND metadata.field1.bool_value = true
.- Type:
- class google.cloud.aiplatform_v1.types.QueryContextLineageSubgraphRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryContextLineageSubgraph].
- context¶
Required. The resource name of the Context whose Artifacts and Executions should be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
- Type:
- class google.cloud.aiplatform_v1.types.QueryDeployedModelsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for QueryDeployedModels method.
- deployment_resource_pool¶
Required. The name of the target DeploymentResourcePool to query. Format:
projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
- Type:
- page_size¶
The maximum number of DeployedModels to return. The service may return fewer than this value.
- Type:
- class google.cloud.aiplatform_v1.types.QueryDeployedModelsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for QueryDeployedModels method.
- deployed_models¶
DEPRECATED Use deployed_model_refs instead.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedModel]
- next_page_token¶
A token, which can be sent as
page_token
to retrieve the next page. If this field is omitted, there are no subsequent pages.- Type:
- deployed_model_refs¶
References to the DeployedModels that share the specified deploymentResourcePool.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DeployedModelRef]
- total_deployed_model_count¶
The total number of DeployedModels on this DeploymentResourcePool.
- Type:
- class google.cloud.aiplatform_v1.types.QueryExecutionInputsAndOutputsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1.MetadataService.QueryExecutionInputsAndOutputs].
- class google.cloud.aiplatform_v1.types.QuestionAnsweringCorrectnessInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for question answering correctness metric.
- metric_spec¶
Required. Spec for question answering correctness score metric.
- instance¶
Required. Question answering correctness instance.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringCorrectnessInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering correctness instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- reference¶
Optional. Ground truth used to compare against the prediction.
This field is a member of oneof
_reference
.- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringCorrectnessResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering correctness result.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringCorrectnessSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering correctness metric.
- use_reference¶
Optional. Whether to use instance.reference to compute question answering correctness.
- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringHelpfulnessInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for question answering helpfulness metric.
- metric_spec¶
Required. Spec for question answering helpfulness score metric.
- instance¶
Required. Question answering helpfulness instance.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringHelpfulnessInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering helpfulness instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- reference¶
Optional. Ground truth used to compare against the prediction.
This field is a member of oneof
_reference
.- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringHelpfulnessResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering helpfulness result.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringHelpfulnessSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering helpfulness metric.
- use_reference¶
Optional. Whether to use instance.reference to compute question answering helpfulness.
- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringQualityInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for question answering quality metric.
- metric_spec¶
Required. Spec for question answering quality score metric.
- instance¶
Required. Question answering quality instance.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringQualityInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering quality instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringQualityResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering quality result.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringQualitySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering quality score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute question answering quality.
- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringRelevanceInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for question answering relevance metric.
- metric_spec¶
Required. Spec for question answering relevance score metric.
- instance¶
Required. Question answering relevance instance.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringRelevanceInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering relevance instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- reference¶
Optional. Ground truth used to compare against the prediction.
This field is a member of oneof
_reference
.- Type:
- class google.cloud.aiplatform_v1.types.QuestionAnsweringRelevanceResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering relevance result.
- class google.cloud.aiplatform_v1.types.QuestionAnsweringRelevanceSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for question answering relevance metric.
- use_reference¶
Optional. Whether to use instance.reference to compute question answering relevance.
- Type:
- class google.cloud.aiplatform_v1.types.RawPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.RawPredict][google.cloud.aiplatform.v1.PredictionService.RawPredict].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- http_body¶
The prediction input. Supports HTTP headers and arbitrary data payload.
A [DeployedModel][google.cloud.aiplatform.v1.DeployedModel] may have an upper limit on the number of instances it supports per request. When this limit it is exceeded for an AutoML model, the [RawPredict][google.cloud.aiplatform.v1.PredictionService.RawPredict] method returns an error. When this limit is exceeded for a custom-trained model, the behavior varies depending on the model.
You can specify the schema for each instance in the [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] field when you create a [Model][google.cloud.aiplatform.v1.Model]. This schema applies when you deploy the
Model
as aDeployedModel
to an [Endpoint][google.cloud.aiplatform.v1.Endpoint] and use theRawPredict
method.- Type:
google.api.httpbody_pb2.HttpBody
- class google.cloud.aiplatform_v1.types.RayLogsSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for the Ray OSS Logs.
- class google.cloud.aiplatform_v1.types.RayMetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for the Ray metrics.
- class google.cloud.aiplatform_v1.types.RaySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration information for the Ray cluster. For experimental launch, Ray cluster creation and Persistent cluster creation are 1:1 mapping: We will provision all the nodes within the Persistent cluster as Ray nodes.
- image_uri¶
Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- Type:
- resource_pool_images¶
Optional. Required if image_uri isn’t set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { “ray_head_node_pool”: “head image” “ray_worker_node_pool1”: “worker image” “ray_worker_node_pool2”: “another worker image” }
- head_node_resource_pool_id¶
Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn’t set.
- Type:
- ray_metric_spec¶
Optional. Ray metrics configurations.
- ray_logs_spec¶
Optional. OSS Ray logging configurations.
- class google.cloud.aiplatform_v1.types.ReadFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.ReadFeatureValues].
- entity_type¶
Required. The resource name of the EntityType for the entity being read. Value format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType}
. For example, for a machine learning model predicting user clicks on a website, an EntityType ID could beuser
.- Type:
- entity_id¶
Required. ID for a specific entity. For example, for a machine learning model predicting user clicks on a website, an entity ID could be
user_123
.- Type:
- feature_selector¶
Required. Selector choosing Features of the target EntityType.
- class google.cloud.aiplatform_v1.types.ReadFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.ReadFeatureValues].
- header¶
Response header.
- entity_view¶
Entity view with Feature values. This may be the entity in the Featurestore if values for all Features were requested, or a projection of the entity in the Featurestore if values for only some Features were requested.
- class EntityView(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Entity view with Feature values.
- data¶
Each piece of data holds the k requested values for one requested Feature. If no values for the requested Feature exist, the corresponding cell will be empty. This has the same size and is in the same order as the features from the header [ReadFeatureValuesResponse.header][google.cloud.aiplatform.v1.ReadFeatureValuesResponse.header].
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ReadFeatureValuesResponse.EntityView.Data]
- class Data(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Container to hold value(s), successive in time, for one Feature from the request.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class FeatureDescriptor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata for requested Features.
- class Header(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response header with metadata for the requested [ReadFeatureValuesRequest.entity_type][google.cloud.aiplatform.v1.ReadFeatureValuesRequest.entity_type] and Features.
- entity_type¶
The resource name of the EntityType from the [ReadFeatureValuesRequest][google.cloud.aiplatform.v1.ReadFeatureValuesRequest]. Value format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType}
.- Type:
- feature_descriptors¶
List of Feature metadata corresponding to each piece of [ReadFeatureValuesResponse.EntityView.data][google.cloud.aiplatform.v1.ReadFeatureValuesResponse.EntityView.data].
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ReadFeatureValuesResponse.FeatureDescriptor]
- class google.cloud.aiplatform_v1.types.ReadIndexDatapointsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The request message for [MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1.MatchService.ReadIndexDatapoints].
- index_endpoint¶
Required. The name of the index endpoint. Format:
projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}
- Type:
- class google.cloud.aiplatform_v1.types.ReadIndexDatapointsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The response message for [MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1.MatchService.ReadIndexDatapoints].
- datapoints¶
The result list of datapoints.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.IndexDatapoint]
- class google.cloud.aiplatform_v1.types.ReadTensorboardBlobDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData].
- time_series¶
Required. The resource name of the TensorboardTimeSeries to list Blobs. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}
- Type:
- class google.cloud.aiplatform_v1.types.ReadTensorboardBlobDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData].
- blobs¶
Blob messages containing blob bytes.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardBlob]
- class google.cloud.aiplatform_v1.types.ReadTensorboardSizeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardSize].
- class google.cloud.aiplatform_v1.types.ReadTensorboardSizeResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardSize].
- class google.cloud.aiplatform_v1.types.ReadTensorboardTimeSeriesDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData].
- tensorboard_time_series¶
Required. The resource name of the TensorboardTimeSeries to read data from. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}
- Type:
- max_data_points¶
The maximum number of TensorboardTimeSeries’ data to return. This value should be a positive integer. This value can be set to -1 to return all data.
- Type:
- class google.cloud.aiplatform_v1.types.ReadTensorboardTimeSeriesDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData].
- time_series_data¶
The returned time series data.
- class google.cloud.aiplatform_v1.types.ReadTensorboardUsageRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardUsage].
- class google.cloud.aiplatform_v1.types.ReadTensorboardUsageResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardUsage].
- monthly_usage_data¶
Maps year-month (YYYYMM) string to per month usage data.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.ReadTensorboardUsageResponse.PerMonthUsageData]
- class PerMonthUsageData(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Per month usage data
- user_usage_data¶
Usage data for each user in the given month.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ReadTensorboardUsageResponse.PerUserUsageData]
- class google.cloud.aiplatform_v1.types.RebaseTunedModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [GenAiTuningService.RebaseTunedModel][google.cloud.aiplatform.v1.GenAiTuningService.RebaseTunedModel].
- generic_metadata¶
The common part of the operation generic information.
- class google.cloud.aiplatform_v1.types.RebaseTunedModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [GenAiTuningService.RebaseTunedModel][google.cloud.aiplatform.v1.GenAiTuningService.RebaseTunedModel].
- parent¶
Required. The resource name of the Location into which to rebase the Model. Format:
projects/{project}/locations/{location}
- Type:
- tuned_model_ref¶
Required. TunedModel reference to retrieve the legacy model information.
- tuning_job¶
Optional. The TuningJob to be updated. Users can use this TuningJob field to overwrite tuning configs.
- artifact_destination¶
Optional. The Google Cloud Storage location to write the artifacts.
- class google.cloud.aiplatform_v1.types.RebootPersistentResourceOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform reboot PersistentResource.
- generic_metadata¶
Operation metadata for PersistentResource.
- class google.cloud.aiplatform_v1.types.RebootPersistentResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PersistentResourceService.RebootPersistentResource][google.cloud.aiplatform.v1.PersistentResourceService.RebootPersistentResource].
- class google.cloud.aiplatform_v1.types.RemoveContextChildrenRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.DeleteContextChildrenRequest][].
- context¶
Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
- Type:
- class google.cloud.aiplatform_v1.types.RemoveContextChildrenResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1.MetadataService.RemoveContextChildren].
- class google.cloud.aiplatform_v1.types.RemoveDatapointsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1.IndexService.RemoveDatapoints]
- index¶
Required. The name of the Index resource to be updated. Format:
projects/{project}/locations/{location}/indexes/{index}
- Type:
- class google.cloud.aiplatform_v1.types.RemoveDatapointsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1.IndexService.RemoveDatapoints]
- class google.cloud.aiplatform_v1.types.ReservationAffinity(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity.
- reservation_affinity_type¶
Required. Specifies the reservation affinity type.
- key¶
Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use
compute.googleapis.com/reservation-name
as the key and specify the name of your reservation as its value.- Type:
- values¶
Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation.
- Type:
MutableSequence[str]
- class Type(value)[source]¶
Bases:
Enum
Identifies a type of reservation affinity.
- Values:
- TYPE_UNSPECIFIED (0):
Default value. This should not be used.
- NO_RESERVATION (1):
Do not consume from any reserved capacity, only use on-demand.
- ANY_RESERVATION (2):
Consume any reservation available, falling back to on-demand.
- SPECIFIC_RESERVATION (3):
Consume from a specific reservation. When chosen, the reservation must be identified via the
key
andvalues
fields.
- class google.cloud.aiplatform_v1.types.ResourcePool(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of a group of resources of the same type, for example machine type, disk, and accelerators, in a PersistentResource.
- id¶
Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it’s generated automatically.
- Type:
- machine_spec¶
Required. Immutable. The specification of a single machine.
- replica_count¶
Optional. The total number of machines to use for this resource pool.
This field is a member of oneof
_replica_count
.- Type:
- disk_spec¶
Optional. Disk spec for the machine in this node pool.
- used_replica_count¶
Output only. The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- Type:
- autoscaling_spec¶
Optional. Optional spec to configure GKE or Ray-on-Vertex autoscaling
- class AutoscalingSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The min/max number of replicas allowed if enabling autoscaling
- min_replica_count¶
Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error. For autoscaling enabled Ray-on-Vertex, we allow min_replica_count of a resource_pool to be 0 to match the OSS Ray behavior(https://docs.ray.io/en/latest/cluster/vms/user-guides/configuring-autoscaling.html#cluster-config-parameters). As for Persistent Resource, the min_replica_count must be > 0, we added a corresponding validation inside CreatePersistentResourceRequestValidator.java.
This field is a member of oneof
_min_replica_count
.- Type:
- class google.cloud.aiplatform_v1.types.ResourceRuntime(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Persistent Cluster runtime information as output
- access_uris¶
Output only. URIs for user to connect to the Cluster. Example: { “RAY_HEAD_NODE_INTERNAL_IP”: “head-node-IP:10001” “RAY_DASHBOARD_URI”: “ray-dashboard-address:8888” }
- class google.cloud.aiplatform_v1.types.ResourceRuntimeSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for the runtime on a PersistentResource instance, including but not limited to:
Service accounts used to run the workloads.
Whether to make it a dedicated Ray Cluster.
- service_account_spec¶
Optional. Configure the use of workload identity on the PersistentResource
- ray_spec¶
Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- class google.cloud.aiplatform_v1.types.ResourcesConsumed(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Statistics information about resource consumption.
- class google.cloud.aiplatform_v1.types.RestoreDatasetVersionOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1.DatasetService.RestoreDatasetVersion].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.RestoreDatasetVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1.DatasetService.RestoreDatasetVersion].
- class google.cloud.aiplatform_v1.types.ResumeModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.ResumeModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.ResumeModelDeploymentMonitoringJob].
- class google.cloud.aiplatform_v1.types.ResumeScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.ResumeSchedule][google.cloud.aiplatform.v1.ScheduleService.ResumeSchedule].
- name¶
Required. The name of the Schedule resource to be resumed. Format:
projects/{project}/locations/{location}/schedules/{schedule}
- Type:
- catch_up¶
Optional. Whether to backfill missed runs when the schedule is resumed from PAUSED state. If set to true, all missed runs will be scheduled. New runs will be scheduled after the backfill is complete. This will also update [Schedule.catch_up][google.cloud.aiplatform.v1.Schedule.catch_up] field. Default to false.
- Type:
- class google.cloud.aiplatform_v1.types.Retrieval(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Defines a retrieval tool that model can call to access external knowledge.
- class google.cloud.aiplatform_v1.types.RetrievalMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata related to retrieval in the grounding flow.
- google_search_dynamic_retrieval_score¶
Optional. Score indicating how likely information from Google Search could help answer the prompt. The score is in the range
[0, 1]
, where 0 is the least likely and 1 is the most likely. This score is only populated when Google Search grounding and dynamic retrieval is enabled. It will be compared to the threshold to determine whether to trigger Google Search.- Type:
- class google.cloud.aiplatform_v1.types.RougeInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for rouge metric.
- metric_spec¶
Required. Spec for rouge score metric.
- instances¶
Required. Repeated rouge instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.RougeInstance]
- class google.cloud.aiplatform_v1.types.RougeInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for rouge instance.
- class google.cloud.aiplatform_v1.types.RougeMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Rouge metric value for an instance.
- class google.cloud.aiplatform_v1.types.RougeResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for rouge metric.
- rouge_metric_values¶
Output only. Rouge metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.RougeMetricValue]
- class google.cloud.aiplatform_v1.types.RougeSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1.
- class google.cloud.aiplatform_v1.types.SafetyInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for safety metric.
- metric_spec¶
Required. Spec for safety metric.
- instance¶
Required. Safety instance.
- class google.cloud.aiplatform_v1.types.SafetyInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for safety instance.
- class google.cloud.aiplatform_v1.types.SafetyRating(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Safety rating corresponding to the generated content.
- category¶
Output only. Harm category.
- probability¶
Output only. Harm probability levels in the content.
- severity¶
Output only. Harm severity levels in the content.
- blocked¶
Output only. Indicates whether the content was filtered out because of this rating.
- Type:
- class HarmProbability(value)[source]¶
Bases:
Enum
Harm probability levels in the content.
- Values:
- HARM_PROBABILITY_UNSPECIFIED (0):
Harm probability unspecified.
- NEGLIGIBLE (1):
Negligible level of harm.
- LOW (2):
Low level of harm.
- MEDIUM (3):
Medium level of harm.
- HIGH (4):
High level of harm.
- class HarmSeverity(value)[source]¶
Bases:
Enum
Harm severity levels.
- Values:
- HARM_SEVERITY_UNSPECIFIED (0):
Harm severity unspecified.
- HARM_SEVERITY_NEGLIGIBLE (1):
Negligible level of harm severity.
- HARM_SEVERITY_LOW (2):
Low level of harm severity.
- HARM_SEVERITY_MEDIUM (3):
Medium level of harm severity.
- HARM_SEVERITY_HIGH (4):
High level of harm severity.
- class google.cloud.aiplatform_v1.types.SafetyResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for safety result.
- class google.cloud.aiplatform_v1.types.SafetySetting(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Safety settings.
- category¶
Required. Harm category.
- threshold¶
Required. The harm block threshold.
- method¶
Optional. Specify if the threshold is used for probability or severity score. If not specified, the threshold is used for probability score.
- class HarmBlockMethod(value)[source]¶
Bases:
Enum
Probability vs severity.
- Values:
- HARM_BLOCK_METHOD_UNSPECIFIED (0):
The harm block method is unspecified.
- SEVERITY (1):
The harm block method uses both probability and severity scores.
- PROBABILITY (2):
The harm block method uses the probability score.
- class HarmBlockThreshold(value)[source]¶
Bases:
Enum
Probability based thresholds levels for blocking.
- Values:
- HARM_BLOCK_THRESHOLD_UNSPECIFIED (0):
Unspecified harm block threshold.
- BLOCK_LOW_AND_ABOVE (1):
Block low threshold and above (i.e. block more).
- BLOCK_MEDIUM_AND_ABOVE (2):
Block medium threshold and above.
- BLOCK_ONLY_HIGH (3):
Block only high threshold (i.e. block less).
- BLOCK_NONE (4):
Block none.
- OFF (5):
Turn off the safety filter.
- class google.cloud.aiplatform_v1.types.SafetySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for safety metric.
- class google.cloud.aiplatform_v1.types.SampleConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
- initial_batch_sample_percentage¶
The percentage of data needed to be labeled in the first batch.
This field is a member of oneof
initial_batch_sample_size
.- Type:
- following_batch_sample_percentage¶
The percentage of data needed to be labeled in each following batch (except the first batch).
This field is a member of oneof
following_batch_sample_size
.- Type:
- sample_strategy¶
Field to choose sampling strategy. Sampling strategy will decide which data should be selected for human labeling in every batch.
- class google.cloud.aiplatform_v1.types.SampledShapleyAttribution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features.
- class google.cloud.aiplatform_v1.types.SamplingStrategy(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Sampling Strategy for logging, can be for both training and prediction dataset.
- random_sample_config¶
Random sample config. Will support more sampling strategies later.
- class google.cloud.aiplatform_v1.types.SavedQuery(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A SavedQuery is a view of the dataset. It references a subset of annotations by problem type and filters.
- display_name¶
Required. The user-defined name of the SavedQuery. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- metadata¶
Some additional information about the SavedQuery.
- create_time¶
Output only. Timestamp when this SavedQuery was created.
- update_time¶
Output only. Timestamp when SavedQuery was last updated.
- problem_type¶
Required. Problem type of the SavedQuery. Allowed values:
IMAGE_CLASSIFICATION_SINGLE_LABEL
IMAGE_CLASSIFICATION_MULTI_LABEL
IMAGE_BOUNDING_POLY
IMAGE_BOUNDING_BOX
TEXT_CLASSIFICATION_SINGLE_LABEL
TEXT_CLASSIFICATION_MULTI_LABEL
TEXT_EXTRACTION
TEXT_SENTIMENT
VIDEO_CLASSIFICATION
VIDEO_OBJECT_TRACKING
- Type:
- annotation_spec_count¶
Output only. Number of AnnotationSpecs in the context of the SavedQuery.
- Type:
- etag¶
Used to perform a consistent read-modify-write update. If not set, a blind “overwrite” update happens.
- Type:
- class google.cloud.aiplatform_v1.types.Scalar(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
One point viewable on a scalar metric plot.
- class google.cloud.aiplatform_v1.types.Schedule(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An instance of a Schedule periodically schedules runs to make API calls based on user specified time specification and API request type.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- cron¶
Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled runs. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: “CRON_TZ=${IANA_TIME_ZONE}” or “TZ=${IANA_TIME_ZONE}”. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, “CRON_TZ=America/New_York 1 * * * *”, or “TZ=America/New_York 1 * * * *”.
This field is a member of oneof
time_specification
.- Type:
- create_pipeline_job_request¶
Request for [PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1.PipelineService.CreatePipelineJob]. CreatePipelineJobRequest.parent field is required (format: projects/{project}/locations/{location}).
This field is a member of oneof
request
.
- create_notebook_execution_job_request¶
Request for [NotebookService.CreateNotebookExecutionJob][google.cloud.aiplatform.v1.NotebookService.CreateNotebookExecutionJob].
This field is a member of oneof
request
.
- display_name¶
Required. User provided name of the Schedule. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- start_time¶
Optional. Timestamp after which the first run can be scheduled. Default to Schedule create time if not specified.
- end_time¶
Optional. Timestamp after which no new runs can be scheduled. If specified, The schedule will be completed when either end_time is reached or when scheduled_run_count >= max_run_count. If not specified, new runs will keep getting scheduled until this Schedule is paused or deleted. Already scheduled runs will be allowed to complete. Unset if not specified.
- max_run_count¶
Optional. Maximum run count of the schedule. If specified, The schedule will be completed when either started_run_count >= max_run_count or when end_time is reached. If not specified, new runs will keep getting scheduled until this Schedule is paused or deleted. Already scheduled runs will be allowed to complete. Unset if not specified.
- Type:
- state¶
Output only. The state of this Schedule.
- create_time¶
Output only. Timestamp when this Schedule was created.
- update_time¶
Output only. Timestamp when this Schedule was updated.
- next_run_time¶
Output only. Timestamp when this Schedule should schedule the next run. Having a next_run_time in the past means the runs are being started behind schedule.
- last_pause_time¶
Output only. Timestamp when this Schedule was last paused. Unset if never paused.
- last_resume_time¶
Output only. Timestamp when this Schedule was last resumed. Unset if never resumed from pause.
- max_concurrent_run_count¶
Required. Maximum number of runs that can be started concurrently for this Schedule. This is the limit for starting the scheduled requests and not the execution of the operations/jobs created by the requests (if applicable).
- Type:
- allow_queueing¶
Optional. Whether new scheduled runs can be queued when max_concurrent_runs limit is reached. If set to true, new runs will be queued instead of skipped. Default to false.
- Type:
- catch_up¶
Output only. Whether to backfill missed runs when the schedule is resumed from PAUSED state. If set to true, all missed runs will be scheduled. New runs will be scheduled after the backfill is complete. Default to false.
- Type:
- last_scheduled_run_response¶
Output only. Response of the last scheduled run. This is the response for starting the scheduled requests and not the execution of the operations/jobs created by the requests (if applicable). Unset if no run has been scheduled yet.
- class RunResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Status of a scheduled run.
- scheduled_run_time¶
The scheduled run time based on the user-specified schedule.
- class State(value)[source]¶
Bases:
Enum
Possible state of the schedule.
- Values:
- STATE_UNSPECIFIED (0):
Unspecified.
- ACTIVE (1):
The Schedule is active. Runs are being scheduled on the user-specified timespec.
- PAUSED (2):
The schedule is paused. No new runs will be created until the schedule is resumed. Already started runs will be allowed to complete.
- COMPLETED (3):
The Schedule is completed. No new runs will be scheduled. Already started runs will be allowed to complete. Schedules in completed state cannot be paused or resumed.
- class google.cloud.aiplatform_v1.types.Scheduling(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
All parameters related to queuing and scheduling of custom jobs.
- timeout¶
Optional. The maximum job running time. The default is 7 days.
- restart_job_on_worker_restart¶
Optional. Restarts the entire CustomJob if a worker gets restarted. This feature can be used by distributed training jobs that are not resilient to workers leaving and joining a job.
- Type:
- strategy¶
Optional. This determines which type of scheduling strategy to use.
- disable_retries¶
Optional. Indicates if the job should retry for internal errors after the job starts running. If true, overrides
Scheduling.restart_job_on_worker_restart
to false.- Type:
- max_wait_duration¶
Optional. This is the maximum duration that a job will wait for the requested resources to be provisioned if the scheduling strategy is set to [Strategy.DWS_FLEX_START]. If set to 0, the job will wait indefinitely. The default is 24 hours.
- class Strategy(value)[source]¶
Bases:
Enum
Optional. This determines which type of scheduling strategy to use. Right now users have two options such as STANDARD which will use regular on demand resources to schedule the job, the other is SPOT which would leverage spot resources alongwith regular resources to schedule the job.
- Values:
- STRATEGY_UNSPECIFIED (0):
Strategy will default to STANDARD.
- ON_DEMAND (1):
Deprecated. Regular on-demand provisioning strategy.
- LOW_COST (2):
Deprecated. Low cost by making potential use of spot resources.
- STANDARD (3):
Standard provisioning strategy uses regular on-demand resources.
- SPOT (4):
Spot provisioning strategy uses spot resources.
- FLEX_START (6):
Flex Start strategy uses DWS to queue for resources.
- class google.cloud.aiplatform_v1.types.Schema(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Schema is used to define the format of input/output data. Represents a select subset of an OpenAPI 3.0 schema object. More fields may be added in the future as needed.
- type_¶
Optional. The type of the data.
- format_¶
Optional. The format of the data. Supported formats:
for NUMBER type: “float”, “double” for INTEGER type: “int32”, “int64” for STRING type: “email”, “byte”, etc
- Type:
- default¶
Optional. Default value of the data.
- items¶
Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
- enum¶
Optional. Possible values of the element of primitive type with enum format. Examples:
We can define direction as : {type:STRING, format:enum, enum:[“EAST”, NORTH”, “SOUTH”, “WEST”]}
We can define apartment number as : {type:INTEGER, format:enum, enum:[“101”, “201”, “301”]}
- Type:
MutableSequence[str]
- properties¶
Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.Schema]
- property_ordering¶
Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
- Type:
MutableSequence[str]
- minimum¶
Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
- Type:
- pattern¶
Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
- Type:
- example¶
Optional. Example of the object. Will only populated when the object is the root.
- any_of¶
Optional. The value should be validated against any (one or more) of the subschemas in the list.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Schema]
- class google.cloud.aiplatform_v1.types.SearchDataItemsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- order_by_data_item¶
A comma-separated list of data item fields to order by, sorted in ascending order. Use “desc” after a field name for descending.
This field is a member of oneof
order
.- Type:
- order_by_annotation¶
Expression that allows ranking results based on annotation’s property.
This field is a member of oneof
order
.
- dataset¶
Required. The resource name of the Dataset from which to search DataItems. Format:
projects/{project}/locations/{location}/datasets/{dataset}
- Type:
- saved_query¶
The resource name of a SavedQuery(annotation set in UI). Format:
projects/{project}/locations/{location}/datasets/{dataset}/savedQueries/{saved_query}
All of the search will be done in the context of this SavedQuery.- Type:
- data_labeling_job¶
The resource name of a DataLabelingJob. Format:
projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}
If this field is set, all of the search will be done in the context of this DataLabelingJob.- Type:
- data_item_filter¶
An expression for filtering the DataItem that will be returned.
data_item_id
- for = or !=.labeled
- for = or !=.has_annotation(ANNOTATION_SPEC_ID)
- true only for DataItem that have at least one annotation with annotation_spec_id =ANNOTATION_SPEC_ID
in the context of SavedQuery or DataLabelingJob.
For example:
data_item=1
has_annotation(5)
- Type:
- annotations_filter¶
An expression for filtering the Annotations that will be returned per DataItem.
annotation_spec_id
- for = or !=.
- Type:
- annotation_filters¶
An expression that specifies what Annotations will be returned per DataItem. Annotations satisfied either of the conditions will be returned.
annotation_spec_id
- for = or !=. Must specifysaved_query_id=
- saved query id that annotations should belong to.
- Type:
MutableSequence[str]
- field_mask¶
Mask specifying which fields of [DataItemView][google.cloud.aiplatform.v1.DataItemView] to read.
- annotations_limit¶
If set, only up to this many of Annotations will be returned per DataItemView. The maximum value is 1000. If not set, the maximum value will be used.
- Type:
- page_size¶
Requested page size. Server may return fewer results than requested. Default and maximum page size is 100.
- Type:
- order_by¶
A comma-separated list of fields to order by, sorted in ascending order. Use “desc” after a field name for descending.
- Type:
- page_token¶
A token identifying a page of results for the server to return Typically obtained via [SearchDataItemsResponse.next_page_token][google.cloud.aiplatform.v1.SearchDataItemsResponse.next_page_token] of the previous [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems] call.
- Type:
- class OrderByAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Expression that allows ranking results based on annotation’s property.
- saved_query¶
Required. Saved query of the Annotation. Only Annotations belong to this saved query will be considered for ordering.
- Type:
- class google.cloud.aiplatform_v1.types.SearchDataItemsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
- data_item_views¶
The DataItemViews read.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.DataItemView]
- class google.cloud.aiplatform_v1.types.SearchEntryPoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Google search entry point.
- rendered_content¶
Optional. Web content snippet that can be embedded in a web page or an app webview.
- Type:
- class google.cloud.aiplatform_v1.types.SearchFeaturesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures].
- location¶
Required. The resource name of the Location to search Features. Format:
projects/{project}/locations/{location}
- Type:
- query¶
Query string that is a conjunction of field-restricted queries and/or field-restricted filters. Field-restricted queries and filters can be combined using
AND
to form a conjunction.A field query is in the form FIELD:QUERY. This implicitly checks if QUERY exists as a substring within Feature’s FIELD. The QUERY and the FIELD are converted to a sequence of words (i.e. tokens) for comparison. This is done by:
Removing leading/trailing whitespace and tokenizing the search value. Characters that are not one of alphanumeric
[a-zA-Z0-9]
, underscore_
, or asterisk*
are treated as delimiters for tokens.*
is treated as a wildcard that matches characters within a token.Ignoring case.
Prepending an asterisk to the first and appending an asterisk to the last token in QUERY.
A QUERY must be either a singular token or a phrase. A phrase is one or multiple words enclosed in double quotation marks (“). With phrases, the order of the words is important. Words in the phrase must be matching in order and consecutively.
Supported FIELDs for field-restricted queries:
feature_id
description
entity_type_id
Examples:
feature_id: foo
–> Matches a Feature with ID containing the substringfoo
(eg.foo
,foofeature
,barfoo
).feature_id: foo*feature
–> Matches a Feature with ID containing the substringfoo*feature
(eg.foobarfeature
).feature_id: foo AND description: bar
–> Matches a Feature with ID containing the substringfoo
and description containing the substringbar
.
Besides field queries, the following exact-match filters are supported. The exact-match filters do not support wildcards. Unlike field-restricted queries, exact-match filters are case-sensitive.
feature_id
: Supports = comparisons.description
: Supports = comparisons. Multi-token filters should be enclosed in quotes.entity_type_id
: Supports = comparisons.value_type
: Supports = and != comparisons.labels
: Supports key-value equality as well as key presence.featurestore_id
: Supports = comparisons.
Examples:
description = "foo bar"
–> Any Feature with description exactly equal tofoo bar
value_type = DOUBLE
–> Features whose type is DOUBLE.labels.active = yes AND labels.env = prod
–> Features having both (active: yes) and (env: prod) labels.labels.env: *
–> Any Feature which has a label withenv
as the key.
- Type:
- page_size¶
The maximum number of Features to return. The service may return fewer than this value. If unspecified, at most 100 Features will be returned. The maximum value is 100; any value greater than 100 will be coerced to 100.
- Type:
- page_token¶
A page token, received from a previous [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures] call. Provide this to retrieve the subsequent page.
When paginating, all other parameters provided to [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures], except
page_size
, must match the call that provided the page token.- Type:
- class google.cloud.aiplatform_v1.types.SearchFeaturesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures].
- features¶
The Features matching the request.
Fields returned:
name
description
labels
create_time
update_time
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Feature]
- class google.cloud.aiplatform_v1.types.SearchMigratableResourcesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1.MigrationService.SearchMigratableResources].
- parent¶
Required. The location that the migratable resources should be searched from. It’s the Vertex AI location that the resources can be migrated to, not the resources’ original location. Format:
projects/{project}/locations/{location}
- Type:
- filter¶
A filter for your search. You can use the following types of filters:
Resource type filters. The following strings filter for a specific type of [MigratableResource][google.cloud.aiplatform.v1.MigratableResource]:
ml_engine_model_version:*
automl_model:*
automl_dataset:*
data_labeling_dataset:*
“Migrated or not” filters. The following strings filter for resources that either have or have not already been migrated:
last_migrate_time:*
filters for migrated resources.NOT last_migrate_time:*
filters for not yet migrated resources.
- Type:
- class google.cloud.aiplatform_v1.types.SearchMigratableResourcesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1.MigrationService.SearchMigratableResources].
- migratable_resources¶
All migratable resources that can be migrated to the location specified in the request.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.MigratableResource]
- class google.cloud.aiplatform_v1.types.SearchModelDeploymentMonitoringStatsAnomaliesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
- model_deployment_monitoring_job¶
Required. ModelDeploymentMonitoring Job resource name. Format:
projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}
- Type:
- deployed_model_id¶
Required. The DeployedModel ID of the [ModelDeploymentMonitoringObjectiveConfig.deployed_model_id].
- Type:
- feature_display_name¶
The feature display name. If specified, only return the stats belonging to this feature. Format: [ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.feature_display_name][google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.feature_display_name], example: “user_destination”.
- Type:
- objectives¶
Required. Objectives of the stats to retrieve.
- page_token¶
A page token received from a previous [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies] call.
- Type:
- start_time¶
The earliest timestamp of stats being generated. If not set, indicates fetching stats till the earliest possible one.
- end_time¶
The latest timestamp of stats being generated. If not set, indicates feching stats till the latest possible one.
- class StatsAnomaliesObjective(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Stats requested for specific objective.
- top_feature_count¶
If set, all attribution scores between [SearchModelDeploymentMonitoringStatsAnomaliesRequest.start_time][google.cloud.aiplatform.v1.SearchModelDeploymentMonitoringStatsAnomaliesRequest.start_time] and [SearchModelDeploymentMonitoringStatsAnomaliesRequest.end_time][google.cloud.aiplatform.v1.SearchModelDeploymentMonitoringStatsAnomaliesRequest.end_time] are fetched, and page token doesn’t take effect in this case. Only used to retrieve attribution score for the top Features which has the highest attribution score in the latest monitoring run.
- Type:
- class google.cloud.aiplatform_v1.types.SearchModelDeploymentMonitoringStatsAnomaliesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
- monitoring_stats¶
Stats retrieved for requested objectives. There are at most 1000 [ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.prediction_stats][google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.prediction_stats] in the response.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ModelMonitoringStatsAnomalies]
- class google.cloud.aiplatform_v1.types.SearchNearestEntitiesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The request message for [FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1.FeatureOnlineStoreService.SearchNearestEntities].
- feature_view¶
Required. FeatureView resource format
projects/{project}/locations/{location}/featureOnlineStores/{featureOnlineStore}/featureViews/{featureView}
- Type:
- query¶
Required. The query.
- return_full_entity¶
Optional. If set to true, the full entities (including all vector values and metadata) of the nearest neighbors are returned; otherwise only entity id of the nearest neighbors will be returned. Note that returning full entities will significantly increase the latency and cost of the query.
- Type:
- class google.cloud.aiplatform_v1.types.SearchNearestEntitiesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1.FeatureOnlineStoreService.SearchNearestEntities]
- nearest_neighbors¶
The nearest neighbors of the query entity.
- class google.cloud.aiplatform_v1.types.Segment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Segment of the content.
- start_index¶
Output only. Start index in the given Part, measured in bytes. Offset from the start of the Part, inclusive, starting at zero.
- Type:
- end_index¶
Output only. End index in the given Part, measured in bytes. Offset from the start of the Part, exclusive, starting at zero.
- Type:
- class google.cloud.aiplatform_v1.types.ServiceAccountSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for the use of custom service account to run the workloads.
- enable_custom_service_account¶
Required. If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- Type:
- service_account¶
Optional. Required when all below conditions are met
enable_custom_service_account
is true;any runtime is specified via
ResourceRuntimeSpec
on creation time, for example, Ray
The users must have
iam.serviceAccounts.actAs
permission on this service account and then the specified runtime containers will run as it.Do not set this field if you want to submit jobs using custom service account to this PersistentResource after creation, but only specify the
service_account
inside the job.- Type:
- class google.cloud.aiplatform_v1.types.ShieldedVmConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A set of Shielded Instance options. See Images using supported Shielded VM features.
- enable_secure_boot¶
Defines whether the instance has Secure Boot enabled.
Secure Boot helps ensure that the system only runs authentic software by verifying the digital signature of all boot components, and halting the boot process if signature verification fails.
- Type:
- class google.cloud.aiplatform_v1.types.SmoothGradConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details:
https://arxiv.org/pdf/1706.03825.pdf
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- noise_sigma¶
This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about normalization.
For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, set [feature_noise_sigma][google.cloud.aiplatform.v1.SmoothGradConfig.feature_noise_sigma] instead for each feature.
This field is a member of oneof
GradientNoiseSigma
.- Type:
- feature_noise_sigma¶
This is similar to [noise_sigma][google.cloud.aiplatform.v1.SmoothGradConfig.noise_sigma], but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, [noise_sigma][google.cloud.aiplatform.v1.SmoothGradConfig.noise_sigma] will be used for all features.
This field is a member of oneof
GradientNoiseSigma
.
- class google.cloud.aiplatform_v1.types.SpecialistPool(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
SpecialistPool represents customers’ own workforce to work on their data labeling jobs. It includes a group of specialist managers and workers. Managers are responsible for managing the workers in this pool as well as customers’ data labeling jobs associated with this pool. Customers create specialist pool as well as start data labeling jobs on Cloud, managers and workers handle the jobs using CrowdCompute console.
- display_name¶
Required. The user-defined name of the SpecialistPool. The name can be up to 128 characters long and can consist of any UTF-8 characters. This field should be unique on project-level.
- Type:
- specialist_manager_emails¶
The email addresses of the managers in the SpecialistPool.
- Type:
MutableSequence[str]
- class google.cloud.aiplatform_v1.types.StartNotebookRuntimeOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StartNotebookRuntime].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.StartNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StartNotebookRuntime].
- class google.cloud.aiplatform_v1.types.StartNotebookRuntimeResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StartNotebookRuntime].
- class google.cloud.aiplatform_v1.types.StopNotebookRuntimeOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.StopNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StopNotebookRuntime].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.StopNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.StopNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StopNotebookRuntime].
- class google.cloud.aiplatform_v1.types.StopNotebookRuntimeResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.StopNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.StopNotebookRuntime].
- class google.cloud.aiplatform_v1.types.StopTrialRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.StopTrial][google.cloud.aiplatform.v1.VizierService.StopTrial].
- class google.cloud.aiplatform_v1.types.StratifiedSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns input data to the training, validation, and test sets so that the distribution of values found in the categorical column (as specified by the
key
field) is mirrored within each split. The fraction values determine the relative sizes of the splits.For example, if the specified column has three values, with 50% of the rows having value “A”, 25% value “B”, and 25% value “C”, and the split fractions are specified as 80/10/10, then the training set will constitute 80% of the training data, with about 50% of the training set rows having the value “A” for the specified column, about 25% having the value “B”, and about 25% having the value “C”.
Only the top 500 occurring values are used; any values not in the top 500 values are randomly assigned to a split. If less than three rows contain a specific value, those rows are randomly assigned.
Supported only for tabular Datasets.
- training_fraction¶
The fraction of the input data that is to be used to train the Model.
- Type:
- validation_fraction¶
The fraction of the input data that is to be used to validate the Model.
- Type:
- class google.cloud.aiplatform_v1.types.StreamDirectPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1.StreamDirectPredictRequest.endpoint] field and optionally [input][]. The subsequent messages must contain [input][].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- inputs¶
Optional. The prediction input.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
Optional. The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.StreamDirectPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectPredict].
- outputs¶
The prediction output.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.StreamDirectRawPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectRawPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.endpoint] and [method_name][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.method_name] fields and optionally [input][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.input]. The subsequent messages must contain [input][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.input]. [method_name][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.method_name] in the subsequent messages have no effect.
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- method_name¶
Optional. Fully qualified name of the API method being invoked to perform predictions.
Format:
/namespace.Service/Method/
Example:/tensorflow.serving.PredictionService/Predict
- Type:
- class google.cloud.aiplatform_v1.types.StreamDirectRawPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectRawPredict].
- class google.cloud.aiplatform_v1.types.StreamRawPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.StreamRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamRawPredict].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- http_body¶
The prediction input. Supports HTTP headers and arbitrary data payload.
- Type:
google.api.httpbody_pb2.HttpBody
- class google.cloud.aiplatform_v1.types.StreamingPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.StreamingPredict][google.cloud.aiplatform.v1.PredictionService.StreamingPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1.StreamingPredictRequest.endpoint] field and optionally [input][]. The subsequent messages must contain [input][].
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- inputs¶
The prediction input.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.StreamingPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.StreamingPredict][google.cloud.aiplatform.v1.PredictionService.StreamingPredict].
- outputs¶
The prediction output.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- parameters¶
The parameters that govern the prediction.
- class google.cloud.aiplatform_v1.types.StreamingRawPredictRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamingRawPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1.StreamingRawPredictRequest.endpoint] and [method_name][google.cloud.aiplatform.v1.StreamingRawPredictRequest.method_name] fields and optionally [input][google.cloud.aiplatform.v1.StreamingRawPredictRequest.input]. The subsequent messages must contain [input][google.cloud.aiplatform.v1.StreamingRawPredictRequest.input]. [method_name][google.cloud.aiplatform.v1.StreamingRawPredictRequest.method_name] in the subsequent messages have no effect.
- endpoint¶
Required. The name of the Endpoint requested to serve the prediction. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- method_name¶
Fully qualified name of the API method being invoked to perform predictions.
Format:
/namespace.Service/Method/
Example:/tensorflow.serving.PredictionService/Predict
- Type:
- class google.cloud.aiplatform_v1.types.StreamingRawPredictResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamingRawPredict].
- class google.cloud.aiplatform_v1.types.StreamingReadFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreOnlineServingService.StreamingReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.StreamingReadFeatureValues].
- entity_type¶
Required. The resource name of the entities’ type. Value format:
projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType}
. For example, for a machine learning model predicting user clicks on a website, an EntityType ID could beuser
.- Type:
- entity_ids¶
Required. IDs of entities to read Feature values of. The maximum number of IDs is 100. For example, for a machine learning model predicting user clicks on a website, an entity ID could be
user_123
.- Type:
MutableSequence[str]
- feature_selector¶
Required. Selector choosing Features of the target EntityType. Feature IDs will be deduplicated.
- class google.cloud.aiplatform_v1.types.StringArray(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A list of string values.
- class google.cloud.aiplatform_v1.types.StructFieldValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
One field of a Struct (or object) type feature value.
- value¶
The value for this field.
- class google.cloud.aiplatform_v1.types.StructValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Struct (or object) type feature value.
- values¶
A list of field values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.StructFieldValue]
- class google.cloud.aiplatform_v1.types.Study(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A message representing a Study.
- name¶
Output only. The name of a study. The study’s globally unique identifier. Format:
projects/{project}/locations/{location}/studies/{study}
- Type:
- study_spec¶
Required. Configuration of the Study.
- state¶
Output only. The detailed state of a Study.
- create_time¶
Output only. Time at which the study was created.
- inactive_reason¶
Output only. A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- Type:
- class State(value)[source]¶
Bases:
Enum
Describes the Study state.
- Values:
- STATE_UNSPECIFIED (0):
The study state is unspecified.
- ACTIVE (1):
The study is active.
- INACTIVE (2):
The study is stopped due to an internal error.
- COMPLETED (3):
The study is done when the service exhausts the parameter search space or max_trial_count is reached.
- class google.cloud.aiplatform_v1.types.StudySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents specification of a Study.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- decay_curve_stopping_spec¶
The automated early stopping spec using decay curve rule.
This field is a member of oneof
automated_stopping_spec
.
- median_automated_stopping_spec¶
The automated early stopping spec using median rule.
This field is a member of oneof
automated_stopping_spec
.
- convex_automated_stopping_spec¶
The automated early stopping spec using convex stopping rule.
This field is a member of oneof
automated_stopping_spec
.
- metrics¶
Required. Metric specs for the Study.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.StudySpec.MetricSpec]
- parameters¶
Required. The set of parameters to tune.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.StudySpec.ParameterSpec]
- algorithm¶
The search algorithm specified for the Study.
- observation_noise¶
The observation noise level of the study. Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
- measurement_selection_type¶
Describe which measurement selection type will be used
- study_stopping_config¶
Conditions for automated stopping of a Study. Enable automated stopping by configuring at least one condition.
This field is a member of oneof
_study_stopping_config
.
- class Algorithm(value)[source]¶
Bases:
Enum
The available search algorithms for the Study.
- Values:
- ALGORITHM_UNSPECIFIED (0):
The default algorithm used by Vertex AI for hyperparameter tuning and Vertex AI Vizier.
- GRID_SEARCH (2):
Simple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
.- RANDOM_SEARCH (3):
Simple random search within the feasible space.
- class ConvexAutomatedStoppingSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Configuration for ConvexAutomatedStoppingSpec. When there are enough completed trials (configured by min_measurement_count), for pending trials with enough measurements and steps, the policy first computes an overestimate of the objective value at max_num_steps according to the slope of the incomplete objective value curve. No prediction can be made if the curve is completely flat. If the overestimation is worse than the best objective value of the completed trials, this pending trial will be early-stopped, but a last measurement will be added to the pending trial with max_num_steps and predicted objective value from the autoregression model.
- max_step_count¶
Steps used in predicting the final objective for early stopped trials. In general, it’s set to be the same as the defined steps in training / tuning. If not defined, it will learn it from the completed trials. When use_steps is false, this field is set to the maximum elapsed seconds.
- Type:
- min_step_count¶
Minimum number of steps for a trial to complete. Trials which do not have a measurement with step_count > min_step_count won’t be considered for early stopping. It’s ok to set it to 0, and a trial can be early stopped at any stage. By default, min_step_count is set to be one-tenth of the max_step_count. When use_elapsed_duration is true, this field is set to the minimum elapsed seconds.
- Type:
- min_measurement_count¶
The minimal number of measurements in a Trial. Early-stopping checks will not trigger if less than min_measurement_count+1 completed trials or pending trials with less than min_measurement_count measurements. If not defined, the default value is 5.
- Type:
- learning_rate_parameter_name¶
The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
- Type:
- use_elapsed_duration¶
This bool determines whether or not the rule is applied based on elapsed_secs or steps. If use_elapsed_duration==false, the early stopping decision is made according to the predicted objective values according to the target steps. If use_elapsed_duration==true, elapsed_secs is used instead of steps. Also, in this case, the parameters max_num_steps and min_num_steps are overloaded to contain max_elapsed_seconds and min_elapsed_seconds.
- Type:
- update_all_stopped_trials¶
ConvexAutomatedStoppingSpec by default only updates the trials that needs to be early stopped using a newly trained auto-regressive model. When this flag is set to True, all stopped trials from the beginning are potentially updated in terms of their
final_measurement
. Also, note that the training logic of autoregressive models is different in this case. Enabling this option has shown better results and this may be the default option in the future.This field is a member of oneof
_update_all_stopped_trials
.- Type:
- class DecayCurveAutomatedStoppingSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The decay curve automated stopping rule builds a Gaussian Process Regressor to predict the final objective value of a Trial based on the already completed Trials and the intermediate measurements of the current Trial. Early stopping is requested for the current Trial if there is very low probability to exceed the optimal value found so far.
- class MeasurementSelectionType(value)[source]¶
Bases:
Enum
This indicates which measurement to use if/when the service automatically selects the final measurement from previously reported intermediate measurements. Choose this based on two considerations: A) Do you expect your measurements to monotonically improve? If so, choose LAST_MEASUREMENT. On the other hand, if you’re in a situation where your system can “over-train” and you expect the performance to get better for a while but then start declining, choose BEST_MEASUREMENT. B) Are your measurements significantly noisy and/or irreproducible? If so, BEST_MEASUREMENT will tend to be over-optimistic, and it may be better to choose LAST_MEASUREMENT. If both or neither of (A) and (B) apply, it doesn’t matter which selection type is chosen.
- Values:
- MEASUREMENT_SELECTION_TYPE_UNSPECIFIED (0):
Will be treated as LAST_MEASUREMENT.
- LAST_MEASUREMENT (1):
Use the last measurement reported.
- BEST_MEASUREMENT (2):
Use the best measurement reported.
- class MedianAutomatedStoppingSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The median automated stopping rule stops a pending Trial if the Trial’s best objective_value is strictly below the median ‘performance’ of all completed Trials reported up to the Trial’s last measurement. Currently, ‘performance’ refers to the running average of the objective values reported by the Trial in each measurement.
- use_elapsed_duration¶
True if median automated stopping rule applies on [Measurement.elapsed_duration][google.cloud.aiplatform.v1.Measurement.elapsed_duration]. It means that elapsed_duration field of latest measurement of current Trial is used to compute median objective value for each completed Trials.
- Type:
- class MetricSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a metric to optimize.
- metric_id¶
Required. The ID of the metric. Must not contain whitespaces and must be unique amongst all MetricSpecs.
- Type:
- goal¶
Required. The optimization goal of the metric.
- safety_config¶
Used for safe search. In the case, the metric will be a safety metric. You must provide a separate metric for objective metric.
This field is a member of oneof
_safety_config
.
- class GoalType(value)[source]¶
Bases:
Enum
The available types of optimization goals.
- Values:
- GOAL_TYPE_UNSPECIFIED (0):
Goal Type will default to maximize.
- MAXIMIZE (1):
Maximize the goal metric.
- MINIMIZE (2):
Minimize the goal metric.
- class SafetyMetricConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Used in safe optimization to specify threshold levels and risk tolerance.
- safety_threshold¶
Safety threshold (boundary value between safe and unsafe). NOTE that if you leave SafetyMetricConfig unset, a default value of 0 will be used.
- Type:
- desired_min_safe_trials_fraction¶
Desired minimum fraction of safe trials (over total number of trials) that should be targeted by the algorithm at any time during the study (best effort). This should be between 0.0 and 1.0 and a value of 0.0 means that there is no minimum and an algorithm proceeds without targeting any specific fraction. A value of 1.0 means that the algorithm attempts to only Suggest safe Trials.
This field is a member of oneof
_desired_min_safe_trials_fraction
.- Type:
- class ObservationNoise(value)[source]¶
Bases:
Enum
Describes the noise level of the repeated observations.
“Noisy” means that the repeated observations with the same Trial parameters may lead to different metric evaluations.
- Values:
- OBSERVATION_NOISE_UNSPECIFIED (0):
The default noise level chosen by Vertex AI.
- LOW (1):
Vertex AI assumes that the objective function is (nearly) perfectly reproducible, and will never repeat the same Trial parameters.
- HIGH (2):
Vertex AI will estimate the amount of noise in metric evaluations, it may repeat the same Trial parameters more than once.
- class ParameterSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a single parameter to optimize.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- double_value_spec¶
The value spec for a ‘DOUBLE’ parameter.
This field is a member of oneof
parameter_value_spec
.
- integer_value_spec¶
The value spec for an ‘INTEGER’ parameter.
This field is a member of oneof
parameter_value_spec
.
- categorical_value_spec¶
The value spec for a ‘CATEGORICAL’ parameter.
This field is a member of oneof
parameter_value_spec
.
- discrete_value_spec¶
The value spec for a ‘DISCRETE’ parameter.
This field is a member of oneof
parameter_value_spec
.
- parameter_id¶
Required. The ID of the parameter. Must not contain whitespaces and must be unique amongst all ParameterSpecs.
- Type:
- scale_type¶
How the parameter should be scaled. Leave unset for
CATEGORICAL
parameters.
- conditional_parameter_specs¶
A conditional parameter node is active if the parameter’s value matches the conditional node’s parent_value_condition.
If two items in conditional_parameter_specs have the same name, they must have disjoint parent_value_condition.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.StudySpec.ParameterSpec.ConditionalParameterSpec]
- class CategoricalValueSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value specification for a parameter in
CATEGORICAL
type.- default_value¶
A default value for a
CATEGORICAL
parameter that is assumed to be a relatively good starting point. Unset value signals that there is no offered starting point.Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
This field is a member of oneof
_default_value
.- Type:
- class ConditionalParameterSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a parameter spec with condition from its parent parameter.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- parent_discrete_values¶
The spec for matching values from a parent parameter of
DISCRETE
type.This field is a member of oneof
parent_value_condition
.
- parent_int_values¶
The spec for matching values from a parent parameter of
INTEGER
type.This field is a member of oneof
parent_value_condition
.
- parent_categorical_values¶
The spec for matching values from a parent parameter of
CATEGORICAL
type.This field is a member of oneof
parent_value_condition
.
- parameter_spec¶
Required. The spec for a conditional parameter.
- class CategoricalValueCondition(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec to match categorical values from parent parameter.
- class DiscreteValueCondition(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec to match discrete values from parent parameter.
- class DiscreteValueSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value specification for a parameter in
DISCRETE
type.- values¶
Required. A list of possible values. The list should be in increasing order and at least 1e-10 apart. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- Type:
MutableSequence[float]
- default_value¶
A default value for a
DISCRETE
parameter that is assumed to be a relatively good starting point. Unset value signals that there is no offered starting point. It automatically rounds to the nearest feasible discrete point.Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
This field is a member of oneof
_default_value
.- Type:
- class DoubleValueSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value specification for a parameter in
DOUBLE
type.- default_value¶
A default value for a
DOUBLE
parameter that is assumed to be a relatively good starting point. Unset value signals that there is no offered starting point.Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
This field is a member of oneof
_default_value
.- Type:
- class IntegerValueSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value specification for a parameter in
INTEGER
type.- default_value¶
A default value for an
INTEGER
parameter that is assumed to be a relatively good starting point. Unset value signals that there is no offered starting point.Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
This field is a member of oneof
_default_value
.- Type:
- class ScaleType(value)[source]¶
Bases:
Enum
The type of scaling that should be applied to this parameter.
- Values:
- SCALE_TYPE_UNSPECIFIED (0):
By default, no scaling is applied.
- UNIT_LINEAR_SCALE (1):
Scales the feasible space to (0, 1) linearly.
- UNIT_LOG_SCALE (2):
Scales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UNIT_REVERSE_LOG_SCALE (3):
Scales the feasible space “reverse” logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- class StudyStoppingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The configuration (stopping conditions) for automated stopping of a Study. Conditions include trial budgets, time budgets, and convergence detection.
- should_stop_asap¶
If true, a Study enters STOPPING_ASAP whenever it would normally enters STOPPING state.
The bottom line is: set to true if you want to interrupt on-going evaluations of Trials as soon as the study stopping condition is met. (Please see Study.State documentation for the source of truth).
- minimum_runtime_constraint¶
Each “stopping rule” in this proto specifies an “if” condition. Before Vizier would generate a new suggestion, it first checks each specified stopping rule, from top to bottom in this list. Note that the first few rules (e.g. minimum_runtime_constraint, min_num_trials) will prevent other stopping rules from being evaluated until they are met. For example, setting
min_num_trials=5
andalways_stop_after= 1 hour
means that the Study will ONLY stop after it has 5 COMPLETED trials, even if more than an hour has passed since its creation. It follows the first applicable rule (whose “if” condition is satisfied) to make a stopping decision. If none of the specified rules are applicable, then Vizier decides that the study should not stop. If Vizier decides that the study should stop, the study enters STOPPING state (or STOPPING_ASAP if should_stop_asap = true). IMPORTANT: The automatic study state transition happens precisely as described above; that is, deleting trials or updating StudyConfig NEVER automatically moves the study state back to ACTIVE. If you want to resume a Study that was stopped, 1) change the stopping conditions if necessary, 2) activate the study, and then 3) ask for suggestions. If the specified time or duration has not passed, do not stop the study.
- maximum_runtime_constraint¶
If the specified time or duration has passed, stop the study.
- min_num_trials¶
If there are fewer than this many COMPLETED trials, do not stop the study.
- max_num_trials¶
If there are more than this many trials, stop the study.
- max_num_trials_no_progress¶
If the objective value has not improved for this many consecutive trials, stop the study.
WARNING: Effective only for single-objective studies.
- max_duration_no_progress¶
If the objective value has not improved for this much time, stop the study.
WARNING: Effective only for single-objective studies.
- class google.cloud.aiplatform_v1.types.StudyTimeConstraint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Time-based Constraint for Study
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- max_duration¶
Counts the wallclock time passed since the creation of this Study.
This field is a member of oneof
constraint
.
- class google.cloud.aiplatform_v1.types.SuggestTrialsMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform Trials suggestion.
- generic_metadata¶
Operation metadata for suggesting Trials.
- class google.cloud.aiplatform_v1.types.SuggestTrialsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1.VizierService.SuggestTrials].
- parent¶
Required. The project and location that the Study belongs to. Format:
projects/{project}/locations/{location}/studies/{study}
- Type:
- client_id¶
Required. The identifier of the client that is requesting the suggestion.
If multiple SuggestTrialsRequests have the same
client_id
, the service will return the identical suggested Trial if the Trial is pending, and provide a new Trial if the last suggested Trial was completed.- Type:
- contexts¶
Optional. This allows you to specify the “context” for a Trial; a context is a slice (a subspace) of the search space.
Typical uses for contexts:
You are using Vizier to tune a server for best performance, but there’s a strong weekly cycle. The context specifies the day-of-week. This allows Tuesday to generalize from Wednesday without assuming that everything is identical.
Imagine you’re optimizing some medical treatment for people. As they walk in the door, you know certain facts about them (e.g. sex, weight, height, blood-pressure). Put that information in the context, and Vizier will adapt its suggestions to the patient.
You want to do a fair A/B test efficiently. Specify the “A” and “B” conditions as contexts, and Vizier will generalize between “A” and “B” conditions. If they are similar, this will allow Vizier to converge to the optimum faster than if “A” and “B” were separate Studies. NOTE: You can also enter contexts as REQUESTED Trials, e.g. via the CreateTrial() RPC; that’s the asynchronous option where you don’t need a close association between contexts and suggestions.
NOTE: All the Parameters you set in a context MUST be defined in the Study. NOTE: You must supply 0 or $suggestion_count contexts. If you don’t supply any contexts, Vizier will make suggestions from the full search space specified in the StudySpec; if you supply a full set of context, each suggestion will match the corresponding context. NOTE: A Context with no features set matches anything, and allows suggestions from the full search space. NOTE: Contexts MUST lie within the search space specified in the StudySpec. It’s an error if they don’t. NOTE: Contexts preferentially match ACTIVE then REQUESTED trials before new suggestions are generated. NOTE: Generation of suggestions involves a match between a Context and (optionally) a REQUESTED trial; if that match is not fully specified, a suggestion will be geneated in the merged subspace.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TrialContext]
- class google.cloud.aiplatform_v1.types.SuggestTrialsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1.VizierService.SuggestTrials].
- trials¶
A list of Trials.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial]
- study_state¶
The state of the Study.
- start_time¶
The time at which the operation was started.
- end_time¶
The time at which operation processing completed.
- class google.cloud.aiplatform_v1.types.SummarizationHelpfulnessInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for summarization helpfulness metric.
- metric_spec¶
Required. Spec for summarization helpfulness score metric.
- instance¶
Required. Summarization helpfulness instance.
- class google.cloud.aiplatform_v1.types.SummarizationHelpfulnessInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization helpfulness instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.SummarizationHelpfulnessResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization helpfulness result.
- class google.cloud.aiplatform_v1.types.SummarizationHelpfulnessSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization helpfulness score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute summarization helpfulness.
- Type:
- class google.cloud.aiplatform_v1.types.SummarizationQualityInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for summarization quality metric.
- metric_spec¶
Required. Spec for summarization quality score metric.
- instance¶
Required. Summarization quality instance.
- class google.cloud.aiplatform_v1.types.SummarizationQualityInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization quality instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.SummarizationQualityResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization quality result.
- class google.cloud.aiplatform_v1.types.SummarizationQualitySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization quality score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute summarization quality.
- Type:
- class google.cloud.aiplatform_v1.types.SummarizationVerbosityInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for summarization verbosity metric.
- metric_spec¶
Required. Spec for summarization verbosity score metric.
- instance¶
Required. Summarization verbosity instance.
- class google.cloud.aiplatform_v1.types.SummarizationVerbosityInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization verbosity instance.
- prediction¶
Required. Output of the evaluated model.
This field is a member of oneof
_prediction
.- Type:
- class google.cloud.aiplatform_v1.types.SummarizationVerbosityResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization verbosity result.
- class google.cloud.aiplatform_v1.types.SummarizationVerbositySpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for summarization verbosity score metric.
- use_reference¶
Optional. Whether to use instance.reference to compute summarization verbosity.
- Type:
- class google.cloud.aiplatform_v1.types.SupervisedHyperParameters(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Hyperparameters for SFT.
- epoch_count¶
Optional. Number of complete passes the model makes over the entire training dataset during training.
- Type:
- adapter_size¶
Optional. Adapter size for tuning.
- class AdapterSize(value)[source]¶
Bases:
Enum
Supported adapter sizes for tuning.
- Values:
- ADAPTER_SIZE_UNSPECIFIED (0):
Adapter size is unspecified.
- ADAPTER_SIZE_ONE (1):
Adapter size 1.
- ADAPTER_SIZE_FOUR (2):
Adapter size 4.
- ADAPTER_SIZE_EIGHT (3):
Adapter size 8.
- ADAPTER_SIZE_SIXTEEN (4):
Adapter size 16.
- class google.cloud.aiplatform_v1.types.SupervisedTuningDataStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tuning data statistics for Supervised Tuning.
- total_tuning_character_count¶
Output only. Number of tuning characters in the tuning dataset.
- Type:
- total_billable_character_count¶
Output only. Number of billable characters in the tuning dataset.
- Type:
- user_input_token_distribution¶
Output only. Dataset distributions for the user input tokens.
- user_output_token_distribution¶
Output only. Dataset distributions for the user output tokens.
- user_message_per_example_distribution¶
Output only. Dataset distributions for the messages per example.
- user_dataset_examples¶
Output only. Sample user messages in the training dataset uri.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Content]
- total_truncated_example_count¶
The number of examples in the dataset that have been truncated by any amount.
- Type:
- class google.cloud.aiplatform_v1.types.SupervisedTuningDatasetDistribution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Dataset distribution for Supervised Tuning.
- buckets¶
Output only. Defines the histogram bucket.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.SupervisedTuningDatasetDistribution.DatasetBucket]
- class google.cloud.aiplatform_v1.types.SupervisedTuningSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tuning Spec for Supervised Tuning for first party models.
- training_dataset_uri¶
Required. Cloud Storage path to file containing training dataset for tuning. The dataset must be formatted as a JSONL file.
- Type:
- validation_dataset_uri¶
Optional. Cloud Storage path to file containing validation dataset for tuning. The dataset must be formatted as a JSONL file.
- Type:
- hyper_parameters¶
Optional. Hyperparameters for SFT.
- class google.cloud.aiplatform_v1.types.SyncFeatureViewRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.SyncFeatureView].
- class google.cloud.aiplatform_v1.types.SyncFeatureViewResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.SyncFeatureView].
- class google.cloud.aiplatform_v1.types.TFRecordDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The storage details for TFRecord output content.
- gcs_destination¶
Required. Google Cloud Storage location.
- class google.cloud.aiplatform_v1.types.Tensor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A tensor value type.
- dtype¶
The data type of tensor.
- bool_val¶
Type specific representations that make it easy to create tensor protos in all languages. Only the representation corresponding to “dtype” can be set. The values hold the flattened representation of the tensor in row major order.
[BOOL][google.cloud.aiplatform.v1.Tensor.DataType.BOOL]
- Type:
MutableSequence[bool]
- double_val¶
[DOUBLE][google.cloud.aiplatform.v1.Tensor.DataType.DOUBLE]
- Type:
MutableSequence[float]
- int_val¶
[INT_8][google.cloud.aiplatform.v1.Tensor.DataType.INT8] [INT_16][google.cloud.aiplatform.v1.Tensor.DataType.INT16] [INT_32][google.cloud.aiplatform.v1.Tensor.DataType.INT32]
- Type:
MutableSequence[int]
- uint_val¶
[UINT8][google.cloud.aiplatform.v1.Tensor.DataType.UINT8] [UINT16][google.cloud.aiplatform.v1.Tensor.DataType.UINT16] [UINT32][google.cloud.aiplatform.v1.Tensor.DataType.UINT32]
- Type:
MutableSequence[int]
- list_val¶
A list of tensor values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Tensor]
- struct_val¶
A map of string to tensor.
- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.Tensor]
- class DataType(value)[source]¶
Bases:
Enum
Data type of the tensor.
- Values:
- DATA_TYPE_UNSPECIFIED (0):
Not a legal value for DataType. Used to indicate a DataType field has not been set.
- BOOL (1):
Data types that all computation devices are expected to be capable to support.
- STRING (2):
No description available.
- FLOAT (3):
No description available.
- DOUBLE (4):
No description available.
- INT8 (5):
No description available.
- INT16 (6):
No description available.
- INT32 (7):
No description available.
- INT64 (8):
No description available.
- UINT8 (9):
No description available.
- UINT16 (10):
No description available.
- UINT32 (11):
No description available.
- UINT64 (12):
No description available.
- class google.cloud.aiplatform_v1.types.Tensorboard(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tensorboard is a physical database that stores users’ training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.
- name¶
Output only. Name of the Tensorboard. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
- Type:
- encryption_spec¶
Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.
- blob_storage_path_prefix¶
Output only. Consumer project Cloud Storage path prefix used to store blob data, which can either be a bucket or directory. Does not end with a ‘/’.
- Type:
- create_time¶
Output only. Timestamp when this Tensorboard was created.
- update_time¶
Output only. Timestamp when this Tensorboard was last updated.
- labels¶
The labels with user-defined metadata to organize your Tensorboards. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Tensorboard (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- etag¶
Used to perform a consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- is_default¶
Used to indicate if the TensorBoard instance is the default one. Each project & region can have at most one default TensorBoard instance. Creation of a default TensorBoard instance and updating an existing TensorBoard instance to be default will mark all other TensorBoard instances (if any) as non default.
- Type:
- class google.cloud.aiplatform_v1.types.TensorboardBlob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
One blob (e.g, image, graph) viewable on a blob metric plot.
- id¶
Output only. A URI safe key uniquely identifying a blob. Can be used to locate the blob stored in the Cloud Storage bucket of the consumer project.
- Type:
- class google.cloud.aiplatform_v1.types.TensorboardBlobSequence(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
One point viewable on a blob metric plot, but mostly just a wrapper message to work around repeated fields can’t be used directly within
oneof
fields.- values¶
List of blobs contained within the sequence.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TensorboardBlob]
- class google.cloud.aiplatform_v1.types.TensorboardExperiment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.
- name¶
Output only. Name of the TensorboardExperiment. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
- Type:
- create_time¶
Output only. Timestamp when this TensorboardExperiment was created.
- update_time¶
Output only. Timestamp when this TensorboardExperiment was last updated.
- labels¶
The labels with user-defined metadata to organize your TensorboardExperiment.
Label keys and values cannot be longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Dataset (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with
aiplatform.googleapis.com/
and are immutable. The following system labels exist for each Dataset:aiplatform.googleapis.com/dataset_metadata_schema
: output only. Its value is the [metadata_schema’s][google.cloud.aiplatform.v1.Dataset.metadata_schema_uri] title.
- etag¶
Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- class google.cloud.aiplatform_v1.types.TensorboardRun(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc
- name¶
Output only. Name of the TensorboardRun. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}
- Type:
- display_name¶
Required. User provided name of this TensorboardRun. This value must be unique among all TensorboardRuns belonging to the same parent TensorboardExperiment.
- Type:
- create_time¶
Output only. Timestamp when this TensorboardRun was created.
- update_time¶
Output only. Timestamp when this TensorboardRun was last updated.
- labels¶
The labels with user-defined metadata to organize your TensorboardRuns.
This field will be used to filter and visualize Runs in the Tensorboard UI. For example, a Vertex AI training job can set a label aiplatform.googleapis.com/training_job_id=xxxxx to all the runs created within that job. An end user can set a label experiment_id=xxxxx for all the runs produced in a Jupyter notebook. These runs can be grouped by a label value and visualized together in the Tensorboard UI.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one TensorboardRun (System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
- etag¶
Used to perform a consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- class google.cloud.aiplatform_v1.types.TensorboardTensor(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
One point viewable on a tensor metric plot.
- value¶
Required. Serialized form of https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor.proto
- Type:
- class google.cloud.aiplatform_v1.types.TensorboardTimeSeries(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
TensorboardTimeSeries maps to times series produced in training runs
- display_name¶
Required. User provided name of this TensorboardTimeSeries. This value should be unique among all TensorboardTimeSeries resources belonging to the same TensorboardRun resource (parent resource).
- Type:
- value_type¶
Required. Immutable. Type of TensorboardTimeSeries value.
- create_time¶
Output only. Timestamp when this TensorboardTimeSeries was created.
- update_time¶
Output only. Timestamp when this TensorboardTimeSeries was last updated.
- etag¶
Used to perform a consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
- Type:
- plugin_name¶
Immutable. Name of the plugin this time series pertain to. Such as Scalar, Tensor, Blob
- Type:
- metadata¶
Output only. Scalar, Tensor, or Blob metadata for this TensorboardTimeSeries.
- class Metadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Describes metadata for a TensorboardTimeSeries.
- max_wall_time¶
Output only. Max wall clock timestamp of all data points within a TensorboardTimeSeries.
- class ValueType(value)[source]¶
Bases:
Enum
An enum representing the value type of a TensorboardTimeSeries.
- Values:
- VALUE_TYPE_UNSPECIFIED (0):
The value type is unspecified.
- SCALAR (1):
Used for TensorboardTimeSeries that is a list of scalars. E.g. accuracy of a model over epochs/time.
- TENSOR (2):
Used for TensorboardTimeSeries that is a list of tensors. E.g. histograms of weights of layer in a model over epoch/time.
- BLOB_SEQUENCE (3):
Used for TensorboardTimeSeries that is a list of blob sequences. E.g. set of sample images with labels over epochs/time.
- class google.cloud.aiplatform_v1.types.ThresholdConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The config for feature monitoring threshold.
- value¶
Specify a threshold value that can trigger the alert. If this threshold config is for feature distribution distance:
For categorical feature, the distribution
distance is calculated by L-inifinity norm.
For numerical feature, the distribution
distance is calculated by Jensen–Shannon divergence.
Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature.
This field is a member of oneof
threshold
.- Type:
- class google.cloud.aiplatform_v1.types.TimeSeriesData(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
All the data stored in a TensorboardTimeSeries.
- tensorboard_time_series_id¶
Required. The ID of the TensorboardTimeSeries, which will become the final component of the TensorboardTimeSeries’ resource name
- Type:
- value_type¶
Required. Immutable. The value type of this time series. All the values in this time series data must match this value type.
- values¶
Required. Data points in this time series.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TimeSeriesDataPoint]
- class google.cloud.aiplatform_v1.types.TimeSeriesDataPoint(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A TensorboardTimeSeries data point.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- wall_time¶
Wall clock timestamp when this data point is generated by the end user.
- class google.cloud.aiplatform_v1.types.TimestampSplit(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Assigns input data to training, validation, and test sets based on a provided timestamps. The youngest data pieces are assigned to training set, next to validation set, and the oldest to the test set.
Supported only for tabular Datasets.
- training_fraction¶
The fraction of the input data that is to be used to train the Model.
- Type:
- validation_fraction¶
The fraction of the input data that is to be used to validate the Model.
- Type:
- key¶
Required. The key is a name of one of the Dataset’s data columns. The values of the key (the values in the column) must be in RFC 3339
date-time
format, wheretime-offset
="Z"
(e.g. 1985-04-12T23:20:50.52Z). If for a piece of data the key is not present or has an invalid value, that piece is ignored by the pipeline.- Type:
- class google.cloud.aiplatform_v1.types.TokensInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tokens info with a list of tokens and the corresponding list of token ids.
- class google.cloud.aiplatform_v1.types.Tool(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool details that the model may use to generate response.
A
Tool
is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).- function_declarations¶
Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating [FunctionCall][content.part.function_call] in the response. User should provide a [FunctionResponse][content.part.function_response] for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 128 function declarations can be provided.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.FunctionDeclaration]
- retrieval¶
Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
- google_search_retrieval¶
Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
- class google.cloud.aiplatform_v1.types.ToolCallValidInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for tool call valid metric.
- metric_spec¶
Required. Spec for tool call valid metric.
- instances¶
Required. Repeated tool call valid instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolCallValidInstance]
- class google.cloud.aiplatform_v1.types.ToolCallValidInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool call valid instance.
- class google.cloud.aiplatform_v1.types.ToolCallValidMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool call valid metric value for an instance.
- class google.cloud.aiplatform_v1.types.ToolCallValidResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for tool call valid metric.
- tool_call_valid_metric_values¶
Output only. Tool call valid metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolCallValidMetricValue]
- class google.cloud.aiplatform_v1.types.ToolCallValidSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool call valid metric.
- class google.cloud.aiplatform_v1.types.ToolConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool config. This config is shared for all tools provided in the request.
- function_calling_config¶
Optional. Function calling config.
- class google.cloud.aiplatform_v1.types.ToolNameMatchInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for tool name match metric.
- metric_spec¶
Required. Spec for tool name match metric.
- instances¶
Required. Repeated tool name match instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolNameMatchInstance]
- class google.cloud.aiplatform_v1.types.ToolNameMatchInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool name match instance.
- class google.cloud.aiplatform_v1.types.ToolNameMatchMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool name match metric value for an instance.
- class google.cloud.aiplatform_v1.types.ToolNameMatchResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for tool name match metric.
- tool_name_match_metric_values¶
Output only. Tool name match metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolNameMatchMetricValue]
- class google.cloud.aiplatform_v1.types.ToolNameMatchSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool name match metric.
- class google.cloud.aiplatform_v1.types.ToolParameterKVMatchInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for tool parameter key value match metric.
- metric_spec¶
Required. Spec for tool parameter key value match metric.
- instances¶
Required. Repeated tool parameter key value match instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolParameterKVMatchInstance]
- class google.cloud.aiplatform_v1.types.ToolParameterKVMatchInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool parameter key value match instance.
- class google.cloud.aiplatform_v1.types.ToolParameterKVMatchMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool parameter key value match metric value for an instance.
- class google.cloud.aiplatform_v1.types.ToolParameterKVMatchResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for tool parameter key value match metric.
- tool_parameter_kv_match_metric_values¶
Output only. Tool parameter key value match metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolParameterKVMatchMetricValue]
- class google.cloud.aiplatform_v1.types.ToolParameterKVMatchSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool parameter key value match metric.
- class google.cloud.aiplatform_v1.types.ToolParameterKeyMatchInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Input for tool parameter key match metric.
- metric_spec¶
Required. Spec for tool parameter key match metric.
- instances¶
Required. Repeated tool parameter key match instances.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolParameterKeyMatchInstance]
- class google.cloud.aiplatform_v1.types.ToolParameterKeyMatchInstance(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool parameter key match instance.
- class google.cloud.aiplatform_v1.types.ToolParameterKeyMatchMetricValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Tool parameter key match metric value for an instance.
- class google.cloud.aiplatform_v1.types.ToolParameterKeyMatchResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Results for tool parameter key match metric.
- tool_parameter_key_match_metric_values¶
Output only. Tool parameter key match metric values.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.ToolParameterKeyMatchMetricValue]
- class google.cloud.aiplatform_v1.types.ToolParameterKeyMatchSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Spec for tool parameter key match metric.
- class google.cloud.aiplatform_v1.types.TrainingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
- class google.cloud.aiplatform_v1.types.TrainingPipeline(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI’s Dataset which becomes the training input, [upload][google.cloud.aiplatform.v1.ModelService.UploadModel] the Model to Vertex AI, and evaluate the Model.
- input_data_config¶
Specifies Vertex AI owned input data that may be used for training the Model. The TrainingPipeline’s [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this config is used and if there are any special requirements on how it should be filled. If nothing about this config is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that the TrainingPipeline does not depend on this configuration.
- training_task_definition¶
Required. A Google Cloud Storage path to the YAML file that defines the training task which is responsible for producing the model artifact, and may also include additional auxiliary work. The definition files that can be used here are found in gs://google-cloud-aiplatform/schema/trainingjob/definition/. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
- Type:
- training_task_inputs¶
Required. The training task’s parameter(s), as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]’s
inputs
.
- training_task_metadata¶
Output only. The metadata information as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]’s
metadata
. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline’s [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] containsmetadata
object.
- model_to_upload¶
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline. The TrainingPipeline’s [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this Model description should be populated, and if there are any special requirements regarding how it should be filled. If nothing is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that this field should not be filled and the training task either uploads the Model without a need of this information, or that training task does not support uploading a Model as part of the pipeline. When the Pipeline’s state becomes
PIPELINE_STATE_SUCCEEDED
and the trained Model had been uploaded into Vertex AI, then the model_to_upload’s resource [name][google.cloud.aiplatform.v1.Model.name] is populated. The Model is always uploaded into the Project and Location in which this pipeline is.
- model_id¶
Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name.
This value may be up to 63 characters, and valid characters are
[a-z0-9_-]
. The first character cannot be a number or hyphen.- Type:
- parent_model¶
Optional. When specify this field, the
model_to_upload
will not be uploaded as a new model, instead, it will become a new version of thisparent_model
.- Type:
- state¶
Output only. The detailed state of the pipeline.
- error¶
Output only. Only populated when the pipeline’s state is
PIPELINE_STATE_FAILED
orPIPELINE_STATE_CANCELLED
.- Type:
google.rpc.status_pb2.Status
- create_time¶
Output only. Time when the TrainingPipeline was created.
- start_time¶
Output only. Time when the TrainingPipeline for the first time entered the
PIPELINE_STATE_RUNNING
state.
- end_time¶
Output only. Time when the TrainingPipeline entered any of the following states:
PIPELINE_STATE_SUCCEEDED
,PIPELINE_STATE_FAILED
,PIPELINE_STATE_CANCELLED
.
- update_time¶
Output only. Time when the TrainingPipeline was most recently updated.
- labels¶
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- encryption_spec¶
Customer-managed encryption key spec for a TrainingPipeline. If set, this TrainingPipeline will be secured by this key.
Note: Model trained by this TrainingPipeline is also secured by this key if [model_to_upload][google.cloud.aiplatform.v1.TrainingPipeline.encryption_spec] is not set separately.
- class google.cloud.aiplatform_v1.types.Trial(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A message representing a Trial. A Trial contains a unique set of Parameters that has been or will be evaluated, along with the objective metrics got by running the Trial.
- state¶
Output only. The detailed state of the Trial.
- parameters¶
Output only. The parameters of the Trial.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial.Parameter]
- final_measurement¶
Output only. The final measurement containing the objective value.
- measurements¶
Output only. A list of measurements that are strictly lexicographically ordered by their induced tuples (steps, elapsed_duration). These are used for early stopping computations.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Measurement]
- start_time¶
Output only. Time when the Trial was started.
- end_time¶
Output only. Time when the Trial’s status changed to
SUCCEEDED
orINFEASIBLE
.
- client_id¶
Output only. The identifier of the client that originally requested this Trial. Each client is identified by a unique client_id. When a client asks for a suggestion, Vertex AI Vizier will assign it a Trial. The client should evaluate the Trial, complete it, and report back to Vertex AI Vizier. If suggestion is asked again by same client_id before the Trial is completed, the same Trial will be returned. Multiple clients with different client_ids can ask for suggestions simultaneously, each of them will get their own Trial.
- Type:
- infeasible_reason¶
Output only. A human readable string describing why the Trial is infeasible. This is set only if Trial state is
INFEASIBLE
.- Type:
- custom_job¶
Output only. The CustomJob name linked to the Trial. It’s set for a HyperparameterTuningJob’s Trial.
- Type:
- web_access_uris¶
Output only. URIs for accessing interactive shells (one URI for each training node). Only available if this trial is part of a [HyperparameterTuningJob][google.cloud.aiplatform.v1.HyperparameterTuningJob] and the job’s [trial_job_spec.enable_web_access][google.cloud.aiplatform.v1.CustomJobSpec.enable_web_access] field is
true
.The keys are names of each node used for the trial; for example,
workerpool0-0
for the primary node,workerpool1-0
for the first node in the second worker pool, andworkerpool1-1
for the second node in the second worker pool.The values are the URIs for each node’s interactive shell.
- class Parameter(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
A message representing a parameter to be tuned.
- parameter_id¶
Output only. The ID of the parameter. The parameter should be defined in [StudySpec’s Parameters][google.cloud.aiplatform.v1.StudySpec.parameters].
- Type:
- value¶
Output only. The value of the parameter.
number_value
will be set if a parameter defined in StudySpec is in type ‘INTEGER’, ‘DOUBLE’ or ‘DISCRETE’.string_value
will be set if a parameter defined in StudySpec is in type ‘CATEGORICAL’.
- class State(value)[source]¶
Bases:
Enum
Describes a Trial state.
- Values:
- STATE_UNSPECIFIED (0):
The Trial state is unspecified.
- REQUESTED (1):
Indicates that a specific Trial has been requested, but it has not yet been suggested by the service.
- ACTIVE (2):
Indicates that the Trial has been suggested.
- STOPPING (3):
Indicates that the Trial should stop according to the service.
- SUCCEEDED (4):
Indicates that the Trial is completed successfully.
- INFEASIBLE (5):
Indicates that the Trial should not be attempted again. The service will set a Trial to INFEASIBLE when it’s done but missing the final_measurement.
- class google.cloud.aiplatform_v1.types.TrialContext(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
- description¶
A human-readable field which can store a description of this context. This will become part of the resulting Trial’s description field.
- Type:
- parameters¶
If/when a Trial is generated or selected from this Context, its Parameters will match any parameters specified here. (I.e. if this context specifies parameter name:’a’ int_value:3, then a resulting Trial will have int_value:3 for its parameter named ‘a’.) Note that we first attempt to match existing REQUESTED Trials with contexts, and if there are no matches, we generate suggestions in the subspace defined by the parameters specified here. NOTE: a Context without any Parameters matches the entire feasible search space.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.Trial.Parameter]
- class google.cloud.aiplatform_v1.types.TunedModel(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The Model Registry Model and Online Prediction Endpoint assiociated with this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- model¶
Output only. The resource name of the TunedModel. Format:
projects/{project}/locations/{location}/models/{model}
.- Type:
- class google.cloud.aiplatform_v1.types.TunedModelRef(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
TunedModel Reference for legacy model migration.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- tuned_model¶
Support migration from model registry.
This field is a member of oneof
tuned_model_ref
.- Type:
- class google.cloud.aiplatform_v1.types.TuningDataStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
The tuning data statistic values for [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- class google.cloud.aiplatform_v1.types.TuningJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents a TuningJob that runs with Google owned models.
- base_model¶
The base model that is being tuned, e.g., “gemini-1.0-pro-002”.
This field is a member of oneof
source_model
.- Type:
- supervised_tuning_spec¶
Tuning Spec for Supervised Fine Tuning.
This field is a member of oneof
tuning_spec
.
- name¶
Output only. Identifier. Resource name of a TuningJob. Format:
projects/{project}/locations/{location}/tuningJobs/{tuning_job}
- Type:
- tuned_model_display_name¶
Optional. The display name of the [TunedModel][google.cloud.aiplatform.v1.Model]. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- Type:
- description¶
Optional. The description of the [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- Type:
- state¶
Output only. The detailed state of the job.
- create_time¶
Output only. Time when the [TuningJob][google.cloud.aiplatform.v1.TuningJob] was created.
- start_time¶
Output only. Time when the [TuningJob][google.cloud.aiplatform.v1.TuningJob] for the first time entered the
JOB_STATE_RUNNING
state.
- end_time¶
Output only. Time when the TuningJob entered any of the following [JobStates][google.cloud.aiplatform.v1.JobState]:
JOB_STATE_SUCCEEDED
,JOB_STATE_FAILED
,JOB_STATE_CANCELLED
,JOB_STATE_EXPIRED
.
- update_time¶
Output only. Time when the [TuningJob][google.cloud.aiplatform.v1.TuningJob] was most recently updated.
- error¶
Output only. Only populated when job’s state is
JOB_STATE_FAILED
orJOB_STATE_CANCELLED
.- Type:
google.rpc.status_pb2.Status
- labels¶
Optional. The labels with user-defined metadata to organize [TuningJob][google.cloud.aiplatform.v1.TuningJob] and generated resources such as [Model][google.cloud.aiplatform.v1.Model] and [Endpoint][google.cloud.aiplatform.v1.Endpoint].
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
- experiment¶
Output only. The Experiment associated with this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- Type:
- tuned_model¶
Output only. The tuned model resources assiociated with this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- tuning_data_stats¶
Output only. The tuning data statistics associated with this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
- encryption_spec¶
Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
- service_account¶
The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent
Users starting the pipeline must have the
iam.serviceAccounts.actAs
permission on this service account.- Type:
- class google.cloud.aiplatform_v1.types.Type(value)[source]¶
Bases:
Enum
Type contains the list of OpenAPI data types as defined by https://swagger.io/docs/specification/data-models/data-types/
- Values:
- TYPE_UNSPECIFIED (0):
Not specified, should not be used.
- STRING (1):
OpenAPI string type
- NUMBER (2):
OpenAPI number type
- INTEGER (3):
OpenAPI integer type
- BOOLEAN (4):
OpenAPI boolean type
- ARRAY (5):
OpenAPI array type
- OBJECT (6):
OpenAPI object type
- class google.cloud.aiplatform_v1.types.UndeployIndexOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UndeployIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
- index_endpoint¶
Required. The name of the IndexEndpoint resource from which to undeploy an Index. Format:
projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}
- Type:
- class google.cloud.aiplatform_v1.types.UndeployIndexResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
- class google.cloud.aiplatform_v1.types.UndeployModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UndeployModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
- endpoint¶
Required. The name of the Endpoint resource from which to undeploy a Model. Format:
projects/{project}/locations/{location}/endpoints/{endpoint}
- Type:
- deployed_model_id¶
Required. The ID of the DeployedModel to be undeployed from the Endpoint.
- Type:
- traffic_split¶
If this field is provided, then the Endpoint’s [traffic_split][google.cloud.aiplatform.v1.Endpoint.traffic_split] will be overwritten with it. If last DeployedModel is being undeployed from the Endpoint, the [Endpoint.traffic_split] will always end up empty when this call returns. A DeployedModel will be successfully undeployed only if it doesn’t have any traffic assigned to it when this method executes, or if this field unassigns any traffic to it.
- class google.cloud.aiplatform_v1.types.UndeployModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
- class google.cloud.aiplatform_v1.types.UnmanagedContainerModel(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains model information necessary to perform batch prediction without requiring a full model import.
- artifact_uri¶
The path to the directory containing the Model artifact and any of its supporting files.
- Type:
- predict_schemata¶
Contains the schemata used in Model’s predictions and explanations
- container_spec¶
Input only. The specification of the container that is to be used when deploying this Model.
- class google.cloud.aiplatform_v1.types.UpdateArtifactRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.UpdateArtifact][google.cloud.aiplatform.v1.MetadataService.UpdateArtifact].
- artifact¶
Required. The Artifact containing updates. The Artifact’s [Artifact.name][google.cloud.aiplatform.v1.Artifact.name] field is used to identify the Artifact to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
- update_mask¶
Optional. A FieldMask indicating which fields should be updated.
- class google.cloud.aiplatform_v1.types.UpdateContextRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.UpdateContext][google.cloud.aiplatform.v1.MetadataService.UpdateContext].
- context¶
Required. The Context containing updates. The Context’s [Context.name][google.cloud.aiplatform.v1.Context.name] field is used to identify the Context to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
- update_mask¶
Optional. A FieldMask indicating which fields should be updated.
- class google.cloud.aiplatform_v1.types.UpdateDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.UpdateDataset][google.cloud.aiplatform.v1.DatasetService.UpdateDataset].
- dataset¶
Required. The Dataset which replaces the resource on the server.
- update_mask¶
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
description
labels
- class google.cloud.aiplatform_v1.types.UpdateDatasetVersionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [DatasetService.UpdateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.UpdateDatasetVersion].
- dataset_version¶
Required. The DatasetVersion which replaces the resource on the server.
- update_mask¶
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
- class google.cloud.aiplatform_v1.types.UpdateDeploymentResourcePoolOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for UpdateDeploymentResourcePool method.
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UpdateDeploymentResourcePoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for UpdateDeploymentResourcePool method.
- deployment_resource_pool¶
Required. The DeploymentResourcePool to update.
The DeploymentResourcePool’s
name
field is used to identify the DeploymentResourcePool to update. Format:projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
- update_mask¶
Required. The list of fields to update.
- class google.cloud.aiplatform_v1.types.UpdateEndpointLongRunningRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.UpdateEndpointLongRunning][google.cloud.aiplatform.v1.EndpointService.UpdateEndpointLongRunning].
- endpoint¶
Required. The Endpoint which replaces the resource on the server. Currently we only support updating the
client_connection_config
field, all the other fields’ update will be blocked.
- class google.cloud.aiplatform_v1.types.UpdateEndpointOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [EndpointService.UpdateEndpointLongRunning][google.cloud.aiplatform.v1.EndpointService.UpdateEndpointLongRunning].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UpdateEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1.EndpointService.UpdateEndpoint].
- endpoint¶
Required. The Endpoint which replaces the resource on the server.
- update_mask¶
Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.UpdateEntityTypeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.UpdateEntityType][google.cloud.aiplatform.v1.FeaturestoreService.UpdateEntityType].
- entity_type¶
Required. The EntityType’s
name
field is used to identify the EntityType to be updated. Format:projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the EntityType resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
description
labels
monitoring_config.snapshot_analysis.disabled
monitoring_config.snapshot_analysis.monitoring_interval_days
monitoring_config.snapshot_analysis.staleness_days
monitoring_config.import_features_analysis.state
monitoring_config.import_features_analysis.anomaly_detection_baseline
monitoring_config.numerical_threshold_config.value
monitoring_config.categorical_threshold_config.value
offline_storage_ttl_days
- class google.cloud.aiplatform_v1.types.UpdateExecutionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [MetadataService.UpdateExecution][google.cloud.aiplatform.v1.MetadataService.UpdateExecution].
- execution¶
Required. The Execution containing updates. The Execution’s [Execution.name][google.cloud.aiplatform.v1.Execution.name] field is used to identify the Execution to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
- update_mask¶
Optional. A FieldMask indicating which fields should be updated.
- class google.cloud.aiplatform_v1.types.UpdateExplanationDatasetOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1.ModelService.UpdateExplanationDataset].
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.UpdateExplanationDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1.ModelService.UpdateExplanationDataset].
- model¶
Required. The resource name of the Model to update. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- examples¶
The example config containing the location of the dataset.
- class google.cloud.aiplatform_v1.types.UpdateExplanationDatasetResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message of [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1.ModelService.UpdateExplanationDataset] operation.
- class google.cloud.aiplatform_v1.types.UpdateFeatureGroupOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update FeatureGroup.
- generic_metadata¶
Operation metadata for FeatureGroup.
- class google.cloud.aiplatform_v1.types.UpdateFeatureGroupRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureRegistryService.UpdateFeatureGroup][google.cloud.aiplatform.v1.FeatureRegistryService.UpdateFeatureGroup].
- feature_group¶
Required. The FeatureGroup’s
name
field is used to identify the FeatureGroup to be updated. Format:projects/{project}/locations/{location}/featureGroups/{feature_group}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the FeatureGroup resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
labels
description
big_query
big_query.entity_id_columns
- class google.cloud.aiplatform_v1.types.UpdateFeatureOnlineStoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update FeatureOnlineStore.
- generic_metadata¶
Operation metadata for FeatureOnlineStore.
- class google.cloud.aiplatform_v1.types.UpdateFeatureOnlineStoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore].
- feature_online_store¶
Required. The FeatureOnlineStore’s
name
field is used to identify the FeatureOnlineStore to be updated. Format:projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the FeatureOnlineStore resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
labels
description
bigtable
bigtable.auto_scaling
bigtable.enable_multi_region_replica
- class google.cloud.aiplatform_v1.types.UpdateFeatureOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update Feature.
- generic_metadata¶
Operation metadata for Feature Update.
- class google.cloud.aiplatform_v1.types.UpdateFeatureRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.UpdateFeature][google.cloud.aiplatform.v1.FeaturestoreService.UpdateFeature]. Request message for [FeatureRegistryService.UpdateFeature][google.cloud.aiplatform.v1.FeatureRegistryService.UpdateFeature].
- feature¶
Required. The Feature’s
name
field is used to identify the Feature to be updated. Format:projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}/features/{feature}
projects/{project}/locations/{location}/featureGroups/{feature_group}/features/{feature}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the Features resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
description
labels
disable_monitoring
(Not supported for FeatureRegistryService Feature)point_of_contact
(Not supported for FeaturestoreService FeatureStore)
- class google.cloud.aiplatform_v1.types.UpdateFeatureViewOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update FeatureView.
- generic_metadata¶
Operation metadata for FeatureView Update.
- class google.cloud.aiplatform_v1.types.UpdateFeatureViewRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeatureOnlineStoreAdminService.UpdateFeatureView][google.cloud.aiplatform.v1.FeatureOnlineStoreAdminService.UpdateFeatureView].
- feature_view¶
Required. The FeatureView’s
name
field is used to identify the FeatureView to be updated. Format:projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the FeatureView resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
labels
service_agent_type
big_query_source
big_query_source.uri
big_query_source.entity_id_columns
feature_registry_source
feature_registry_source.feature_groups
sync_config
sync_config.cron
optimized_config.automatic_resources
- class google.cloud.aiplatform_v1.types.UpdateFeaturestoreOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update Featurestore.
- generic_metadata¶
Operation metadata for Featurestore.
- class google.cloud.aiplatform_v1.types.UpdateFeaturestoreRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreService.UpdateFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.UpdateFeaturestore].
- featurestore¶
Required. The Featurestore’s
name
field is used to identify the Featurestore to be updated. Format:projects/{project}/locations/{location}/featurestores/{featurestore}
- update_mask¶
Field mask is used to specify the fields to be overwritten in the Featurestore resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields.Updatable fields:
labels
online_serving_config.fixed_node_count
online_serving_config.scaling
online_storage_ttl_days
- class google.cloud.aiplatform_v1.types.UpdateIndexEndpointRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexEndpointService.UpdateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.UpdateIndexEndpoint].
- index_endpoint¶
Required. The IndexEndpoint which replaces the resource on the server.
- update_mask¶
Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.UpdateIndexOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [IndexService.UpdateIndex][google.cloud.aiplatform.v1.IndexService.UpdateIndex].
- generic_metadata¶
The operation generic information.
- nearest_neighbor_search_operation_metadata¶
The operation metadata with regard to Matching Engine Index operation.
- class google.cloud.aiplatform_v1.types.UpdateIndexRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.UpdateIndex][google.cloud.aiplatform.v1.IndexService.UpdateIndex].
- index¶
Required. The Index which updates the resource on the server.
- update_mask¶
The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.UpdateModelDeploymentMonitoringJobOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation information for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.UpdateModelDeploymentMonitoringJob].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UpdateModelDeploymentMonitoringJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.UpdateModelDeploymentMonitoringJob].
- model_deployment_monitoring_job¶
Required. The model monitoring configuration which replaces the resource on the server.
- update_mask¶
Required. The update mask is used to specify the fields to be overwritten in the ModelDeploymentMonitoringJob resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields. For the objective config, the user can either provide the update mask for model_deployment_monitoring_objective_configs or any combination of its nested fields, such as: model_deployment_monitoring_objective_configs.objective_config.training_dataset.Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. andmodel_deployment_monitoring_objective_configs
. ormodel_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
- class google.cloud.aiplatform_v1.types.UpdateModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.UpdateModel][google.cloud.aiplatform.v1.ModelService.UpdateModel].
- model¶
Required. The Model which replaces the resource on the server. When Model Versioning is enabled, the model.name will be used to determine whether to update the model or model version.
model.name with the @ value, e.g. models/123@1, refers to a version specific update.
model.name without the @ value, e.g. models/123, refers to a model update.
model.name with @-, e.g. models/123@-, refers to a model update.
Supported model fields: display_name, description; supported version-specific fields: version_description. Labels are supported in both scenarios. Both the model labels and the version labels are merged when a model is returned. When updating labels, if the request is for model-specific update, model label gets updated. Otherwise, version labels get updated.
A model name or model version name fields update mismatch will cause a precondition error.
One request cannot update both the model and the version fields. You must update them separately.
- update_mask¶
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.UpdateNotebookRuntimeTemplateRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.UpdateNotebookRuntimeTemplate][google.cloud.aiplatform.v1.NotebookService.UpdateNotebookRuntimeTemplate].
- notebook_runtime_template¶
Required. The NotebookRuntimeTemplate to update.
- update_mask¶
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Input format:{paths: "${updated_filed}"}
Updatable fields:encryption_spec.kms_key_name
- class google.cloud.aiplatform_v1.types.UpdatePersistentResourceOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update PersistentResource.
- generic_metadata¶
Operation metadata for PersistentResource.
- class google.cloud.aiplatform_v1.types.UpdatePersistentResourceRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for UpdatePersistentResource method.
- persistent_resource¶
Required. The PersistentResource to update.
The PersistentResource’s
name
field is used to identify the PersistentResource to update. Format:projects/{project}/locations/{location}/persistentResources/{persistent_resource}
- update_mask¶
Required. Specify the fields to be overwritten in the PersistentResource by the update method.
- class google.cloud.aiplatform_v1.types.UpdateScheduleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ScheduleService.UpdateSchedule][google.cloud.aiplatform.v1.ScheduleService.UpdateSchedule].
- schedule¶
Required. The Schedule which replaces the resource on the server. The following restrictions will be applied:
The scheduled request type cannot be changed.
The non-empty fields cannot be unset.
The output_only fields will be ignored if specified.
- update_mask¶
Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask].
- class google.cloud.aiplatform_v1.types.UpdateSpecialistPoolOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Runtime operation metadata for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.UpdateSpecialistPool].
- specialist_pool¶
Output only. The name of the SpecialistPool to which the specialists are being added. Format:
projects/{project_id}/locations/{location_id}/specialistPools/{specialist_pool}
- Type:
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UpdateSpecialistPoolRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.UpdateSpecialistPool].
- specialist_pool¶
Required. The SpecialistPool which replaces the resource on the server.
- update_mask¶
Required. The update mask applies to the resource.
- class google.cloud.aiplatform_v1.types.UpdateTensorboardExperimentRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.UpdateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardExperiment].
- update_mask¶
Required. Field mask is used to specify the fields to be overwritten in the TensorboardExperiment resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it’s in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified.
- tensorboard_experiment¶
Required. The TensorboardExperiment’s
name
field is used to identify the TensorboardExperiment to be updated. Format:projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
- class google.cloud.aiplatform_v1.types.UpdateTensorboardOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of operations that perform update Tensorboard.
- generic_metadata¶
Operation metadata for Tensorboard.
- class google.cloud.aiplatform_v1.types.UpdateTensorboardRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.UpdateTensorboard][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboard].
- update_mask¶
Required. Field mask is used to specify the fields to be overwritten in the Tensorboard resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it’s in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified.
- tensorboard¶
Required. The Tensorboard’s
name
field is used to identify the Tensorboard to be updated. Format:projects/{project}/locations/{location}/tensorboards/{tensorboard}
- class google.cloud.aiplatform_v1.types.UpdateTensorboardRunRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.UpdateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardRun].
- update_mask¶
Required. Field mask is used to specify the fields to be overwritten in the TensorboardRun resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it’s in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified.
- tensorboard_run¶
Required. The TensorboardRun’s
name
field is used to identify the TensorboardRun to be updated. Format:projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}
- class google.cloud.aiplatform_v1.types.UpdateTensorboardTimeSeriesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.UpdateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardTimeSeries].
- update_mask¶
Required. Field mask is used to specify the fields to be overwritten in the TensorboardTimeSeries resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it’s in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified.
- tensorboard_time_series¶
Required. The TensorboardTimeSeries’
name
field is used to identify the TensorboardTimeSeries to be updated. Format:projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}
- class google.cloud.aiplatform_v1.types.UpgradeNotebookRuntimeOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata information for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.UpgradeNotebookRuntime].
- generic_metadata¶
The operation generic information.
- class google.cloud.aiplatform_v1.types.UpgradeNotebookRuntimeRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.UpgradeNotebookRuntime].
- class google.cloud.aiplatform_v1.types.UpgradeNotebookRuntimeResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1.NotebookService.UpgradeNotebookRuntime].
- class google.cloud.aiplatform_v1.types.UploadModelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Details of [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel] operation.
- generic_metadata¶
The common part of the operation metadata.
- class google.cloud.aiplatform_v1.types.UploadModelRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel].
- parent¶
Required. The resource name of the Location into which to upload the Model. Format:
projects/{project}/locations/{location}
- Type:
- parent_model¶
Optional. The resource name of the model into which to upload the version. Only specify this field when uploading a new version.
- Type:
- model_id¶
Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name.
This value may be up to 63 characters, and valid characters are
[a-z0-9_-]
. The first character cannot be a number or hyphen.- Type:
- model¶
Required. The Model to create.
- service_account¶
Optional. The user-provided custom service account to use to do the model upload. If empty, Vertex AI Service Agent will be used to access resources needed to upload the model. This account must belong to the target project where the model is uploaded to, i.e., the project specified in the
parent
field of this request and have necessary read permissions (to Google Cloud Storage, Artifact Registry, etc.).- Type:
- class google.cloud.aiplatform_v1.types.UploadModelResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message of [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel] operation.
- model¶
The name of the uploaded Model resource. Format:
projects/{project}/locations/{location}/models/{model}
- Type:
- class google.cloud.aiplatform_v1.types.UpsertDatapointsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1.IndexService.UpsertDatapoints]
- index¶
Required. The name of the Index resource to be updated. Format:
projects/{project}/locations/{location}/indexes/{index}
- Type:
- datapoints¶
A list of datapoints to be created/updated.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.IndexDatapoint]
- update_mask¶
Optional. Update mask is used to specify the fields to be overwritten in the datapoints by the update. The fields specified in the update_mask are relative to each IndexDatapoint inside datapoints, not the full request.
Updatable fields:
Use
all_restricts
to update both restricts and numeric_restricts.
- class google.cloud.aiplatform_v1.types.UpsertDatapointsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1.IndexService.UpsertDatapoints]
- class google.cloud.aiplatform_v1.types.UserActionReference(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
References an API call. It contains more information about long running operation and Jobs that are triggered by the API call.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- operation¶
For API calls that return a long running operation. Resource name of the long running operation. Format:
projects/{project}/locations/{location}/operations/{operation}
This field is a member of oneof
reference
.- Type:
- class google.cloud.aiplatform_v1.types.Value(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Value is the value of the field.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class google.cloud.aiplatform_v1.types.VertexAISearch(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Retrieve from Vertex AI Search datastore for grounding. See https://cloud.google.com/products/agent-builder
- class google.cloud.aiplatform_v1.types.VideoMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Metadata describes the input video content.
- start_offset¶
Optional. The start offset of the video.
- end_offset¶
Optional. The end offset of the video.
- class google.cloud.aiplatform_v1.types.WorkerPoolSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Represents the spec of a worker pool in a job.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- machine_spec¶
Optional. Immutable. The specification of a single machine.
- nfs_mounts¶
Optional. List of NFS mount spec.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.NfsMount]
- disk_spec¶
Disk spec.
- class google.cloud.aiplatform_v1.types.WriteFeatureValuesPayload(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Contains Feature values to be written for a specific entity.
- feature_values¶
Required. Feature values to be written, mapping from Feature ID to value. Up to 100,000
feature_values
entries may be written across all payloads. The feature generation time, aligned by days, must be no older than five years (1825 days) and no later than one year (366 days) in the future.- Type:
MutableMapping[str, google.cloud.aiplatform_v1.types.FeatureValue]
- class google.cloud.aiplatform_v1.types.WriteFeatureValuesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.WriteFeatureValues].
- entity_type¶
Required. The resource name of the EntityType for the entities being written. Value format:
projects/{project}/locations/{location}/featurestores/ {featurestore}/entityTypes/{entityType}
. For example, for a machine learning model predicting user clicks on a website, an EntityType ID could beuser
.- Type:
- payloads¶
Required. The entities to be written. Up to 100,000 feature values can be written across all
payloads
.- Type:
MutableSequence[google.cloud.aiplatform_v1.types.WriteFeatureValuesPayload]
- class google.cloud.aiplatform_v1.types.WriteFeatureValuesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.WriteFeatureValues].
- class google.cloud.aiplatform_v1.types.WriteTensorboardExperimentDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData].
- tensorboard_experiment¶
Required. The resource name of the TensorboardExperiment to write data to. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}
- Type:
- write_run_data_requests¶
Required. Requests containing per-run TensorboardTimeSeries data to write.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.WriteTensorboardRunDataRequest]
- class google.cloud.aiplatform_v1.types.WriteTensorboardExperimentDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData].
- class google.cloud.aiplatform_v1.types.WriteTensorboardRunDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Request message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData].
- tensorboard_run¶
Required. The resource name of the TensorboardRun to write data to. Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}
- Type:
- time_series_data¶
Required. The TensorboardTimeSeries data to write. Values with in a time series are indexed by their step value. Repeated writes to the same step will overwrite the existing value for that step. The upper limit of data points per write request is 5000.
- Type:
MutableSequence[google.cloud.aiplatform_v1.types.TimeSeriesData]
- class google.cloud.aiplatform_v1.types.WriteTensorboardRunDataResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
Response message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData].
- class google.cloud.aiplatform_v1.types.XraiAttribution(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
Message
An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model’s fully differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825
Supported only by image Models.
- step_count¶
Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
- Type:
- smooth_grad_config¶
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
- blur_baseline_config¶
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: