As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.cloud.automl_v1.services.auto_ml.async_client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.cloud.automl_v1 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.api_core import operation  # type: ignore
from google.api_core import operation_async  # type: ignore
from google.protobuf import empty_pb2  # type: ignore
from google.protobuf import field_mask_pb2  # type: ignore
from google.protobuf import timestamp_pb2  # type: ignore

from google.cloud.automl_v1.services.auto_ml import pagers
from google.cloud.automl_v1.types import (
    model_evaluation,
    operations,
    service,
    text,
    text_extraction,
    text_sentiment,
    translation,
)
from google.cloud.automl_v1.types import annotation_spec, classification
from google.cloud.automl_v1.types import dataset
from google.cloud.automl_v1.types import dataset as gca_dataset
from google.cloud.automl_v1.types import detection, image, io
from google.cloud.automl_v1.types import model
from google.cloud.automl_v1.types import model as gca_model

from .client import AutoMlClient
from .transports.base import DEFAULT_CLIENT_INFO, AutoMlTransport
from .transports.grpc_asyncio import AutoMlGrpcAsyncIOTransport


[docs]class AutoMlAsyncClient: """AutoML Server API. The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted. An ID of a resource is the last element of the item's resource name. For ``projects/{project_id}/locations/{location_id}/datasets/{dataset_id}``, then the id for the item is ``{dataset_id}``. Currently the only supported ``location_id`` is "us-central1". On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted. """ _client: AutoMlClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = AutoMlClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = AutoMlClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = AutoMlClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = AutoMlClient._DEFAULT_UNIVERSE annotation_spec_path = staticmethod(AutoMlClient.annotation_spec_path) parse_annotation_spec_path = staticmethod(AutoMlClient.parse_annotation_spec_path) dataset_path = staticmethod(AutoMlClient.dataset_path) parse_dataset_path = staticmethod(AutoMlClient.parse_dataset_path) model_path = staticmethod(AutoMlClient.model_path) parse_model_path = staticmethod(AutoMlClient.parse_model_path) model_evaluation_path = staticmethod(AutoMlClient.model_evaluation_path) parse_model_evaluation_path = staticmethod(AutoMlClient.parse_model_evaluation_path) common_billing_account_path = staticmethod(AutoMlClient.common_billing_account_path) parse_common_billing_account_path = staticmethod( AutoMlClient.parse_common_billing_account_path ) common_folder_path = staticmethod(AutoMlClient.common_folder_path) parse_common_folder_path = staticmethod(AutoMlClient.parse_common_folder_path) common_organization_path = staticmethod(AutoMlClient.common_organization_path) parse_common_organization_path = staticmethod( AutoMlClient.parse_common_organization_path ) common_project_path = staticmethod(AutoMlClient.common_project_path) parse_common_project_path = staticmethod(AutoMlClient.parse_common_project_path) common_location_path = staticmethod(AutoMlClient.common_location_path) parse_common_location_path = staticmethod(AutoMlClient.parse_common_location_path)
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AutoMlAsyncClient: The constructed client. """ return AutoMlClient.from_service_account_info.__func__(AutoMlAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AutoMlAsyncClient: The constructed client. """ return AutoMlClient.from_service_account_file.__func__(AutoMlAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return AutoMlClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> AutoMlTransport: """Returns the transport used by the client instance. Returns: AutoMlTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = AutoMlClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[str, AutoMlTransport, Callable[..., AutoMlTransport]] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the auto ml async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,AutoMlTransport,Callable[..., AutoMlTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the AutoMlTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = AutoMlClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, )
[docs] async def create_dataset( self, request: Optional[Union[service.CreateDatasetRequest, dict]] = None, *, parent: Optional[str] = None, dataset: Optional[gca_dataset.Dataset] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates a dataset. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_create_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.CreateDatasetRequest( parent="parent_value", dataset=dataset, ) # Make the request operation = client.create_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.CreateDatasetRequest, dict]]): The request object. Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset]. parent (:class:`str`): Required. The resource name of the project to create the dataset for. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset (:class:`google.cloud.automl_v1.types.Dataset`): Required. The dataset to create. This corresponds to the ``dataset`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.automl_v1.types.Dataset` A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, dataset]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.CreateDatasetRequest): request = service.CreateDatasetRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if dataset is not None: request.dataset = dataset # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.create_dataset ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, gca_dataset.Dataset, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def get_dataset( self, request: Optional[Union[service.GetDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> dataset.Dataset: r"""Gets a dataset. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetDatasetRequest( name="name_value", ) # Make the request response = await client.get_dataset(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.GetDatasetRequest, dict]]): The request object. Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset]. name (:class:`str`): Required. The resource name of the dataset to retrieve. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.Dataset: A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.GetDatasetRequest): request = service.GetDatasetRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_dataset ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_datasets( self, request: Optional[Union[service.ListDatasetsRequest, dict]] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListDatasetsAsyncPager: r"""Lists datasets in a project. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_datasets(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListDatasetsRequest( parent="parent_value", ) # Make the request page_result = client.list_datasets(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ListDatasetsRequest, dict]]): The request object. Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets]. parent (:class:`str`): Required. The resource name of the project from which to list datasets. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsAsyncPager: Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ListDatasetsRequest): request = service.ListDatasetsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_datasets ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListDatasetsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def update_dataset( self, request: Optional[Union[service.UpdateDatasetRequest, dict]] = None, *, dataset: Optional[gca_dataset.Dataset] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_dataset.Dataset: r"""Updates a dataset. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_update_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.UpdateDatasetRequest( dataset=dataset, ) # Make the request response = await client.update_dataset(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.UpdateDatasetRequest, dict]]): The request object. Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset] dataset (:class:`google.cloud.automl_v1.types.Dataset`): Required. The dataset which replaces the resource on the server. This corresponds to the ``dataset`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): Required. The update mask applies to the resource. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.Dataset: A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([dataset, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.UpdateDatasetRequest): request = service.UpdateDatasetRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if dataset is not None: request.dataset = dataset if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.update_dataset ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("dataset.name", request.dataset.name),) ), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_dataset( self, request: Optional[Union[service.DeleteDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deletes a dataset and all of its contents. Returns empty response in the [response][google.longrunning.Operation.response] field when it completes, and ``delete_details`` in the [metadata][google.longrunning.Operation.metadata] field. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_delete_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeleteDatasetRequest( name="name_value", ) # Make the request operation = client.delete_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.DeleteDatasetRequest, dict]]): The request object. Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset]. name (:class:`str`): Required. The resource name of the dataset to delete. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.DeleteDatasetRequest): request = service.DeleteDatasetRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.delete_dataset ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def import_data( self, request: Optional[Union[service.ImportDataRequest, dict]] = None, *, name: Optional[str] = None, input_config: Optional[io.InputConfig] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Imports data into a dataset. For Tables this method can only be called on an empty Dataset. For Tables: - A [schema_inference_version][google.cloud.automl.v1.InputConfig.params] parameter must be explicitly set. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_import_data(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) input_config = automl_v1.InputConfig() input_config.gcs_source.input_uris = ['input_uris_value1', 'input_uris_value2'] request = automl_v1.ImportDataRequest( name="name_value", input_config=input_config, ) # Make the request operation = client.import_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ImportDataRequest, dict]]): The request object. Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData]. name (:class:`str`): Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. input_config (:class:`google.cloud.automl_v1.types.InputConfig`): Required. The desired input location and its domain specific semantics, if any. This corresponds to the ``input_config`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, input_config]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ImportDataRequest): request = service.ImportDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if input_config is not None: request.input_config = input_config # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.import_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def export_data( self, request: Optional[Union[service.ExportDataRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[io.OutputConfig] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Exports dataset's data to the provided output location. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_export_data(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) output_config = automl_v1.OutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportDataRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ExportDataRequest, dict]]): The request object. Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData]. name (:class:`str`): Required. The resource name of the dataset. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. output_config (:class:`google.cloud.automl_v1.types.OutputConfig`): Required. The desired output location. This corresponds to the ``output_config`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, output_config]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ExportDataRequest): request = service.ExportDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if output_config is not None: request.output_config = output_config # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.export_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def get_annotation_spec( self, request: Optional[Union[service.GetAnnotationSpecRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> annotation_spec.AnnotationSpec: r"""Gets an annotation spec. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_annotation_spec(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetAnnotationSpecRequest( name="name_value", ) # Make the request response = await client.get_annotation_spec(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.GetAnnotationSpecRequest, dict]]): The request object. Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec]. name (:class:`str`): Required. The resource name of the annotation spec to retrieve. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.AnnotationSpec: A definition of an annotation spec. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.GetAnnotationSpecRequest): request = service.GetAnnotationSpecRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_annotation_spec ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def create_model( self, request: Optional[Union[service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[gca_model.Model] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates a model. Returns a Model in the [response][google.longrunning.Operation.response] field when it completes. When you create a model, several model evaluations are created for it: a global evaluation, and one evaluation for each annotation spec. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_create_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.CreateModelRequest( parent="parent_value", ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.CreateModelRequest, dict]]): The request object. Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel]. parent (:class:`str`): Required. Resource name of the parent project where the model is being created. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model (:class:`google.cloud.automl_v1.types.Model`): Required. The model to create. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.automl_v1.types.Model` API proto representing a trained machine learning model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, model]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.CreateModelRequest): request = service.CreateModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if model is not None: request.model = model # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.create_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, gca_model.Model, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def get_model( self, request: Optional[Union[service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Gets a model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetModelRequest( name="name_value", ) # Make the request response = await client.get_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.GetModelRequest, dict]]): The request object. Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel]. name (:class:`str`): Required. Resource name of the model. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.Model: API proto representing a trained machine learning model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.GetModelRequest): request = service.GetModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_models( self, request: Optional[Union[service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListModelsAsyncPager: r"""Lists models. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_models(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ListModelsRequest, dict]]): The request object. Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels]. parent (:class:`str`): Required. Resource name of the project, from which to list the models. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.services.auto_ml.pagers.ListModelsAsyncPager: Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ListModelsRequest): request = service.ListModelsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_models ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListModelsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_model( self, request: Optional[Union[service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deletes a model. Returns ``google.protobuf.Empty`` in the [response][google.longrunning.Operation.response] field when it completes, and ``delete_details`` in the [metadata][google.longrunning.Operation.metadata] field. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_delete_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeleteModelRequest( name="name_value", ) # Make the request operation = client.delete_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.DeleteModelRequest, dict]]): The request object. Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel]. name (:class:`str`): Required. Resource name of the model being deleted. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.DeleteModelRequest): request = service.DeleteModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.delete_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def update_model( self, request: Optional[Union[service.UpdateModelRequest, dict]] = None, *, model: Optional[gca_model.Model] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_model.Model: r"""Updates a model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_update_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.UpdateModelRequest( ) # Make the request response = await client.update_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.UpdateModelRequest, dict]]): The request object. Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel] model (:class:`google.cloud.automl_v1.types.Model`): Required. The model which replaces the resource on the server. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): Required. The update mask applies to the resource. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.Model: API proto representing a trained machine learning model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.UpdateModelRequest): request = service.UpdateModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.update_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("model.name", request.model.name),) ), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def deploy_model( self, request: Optional[Union[service.DeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number]) will reset the deployment state without pausing the model's availability. Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage deployment automatically. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_deploy_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeployModelRequest( name="name_value", ) # Make the request operation = client.deploy_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.DeployModelRequest, dict]]): The request object. Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel]. name (:class:`str`): Required. Resource name of the model to deploy. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.DeployModelRequest): request = service.DeployModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.deploy_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def undeploy_model( self, request: Optional[Union[service.UndeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Undeploys a model. If the model is not deployed this method has no effect. Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_undeploy_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.UndeployModelRequest( name="name_value", ) # Make the request operation = client.undeploy_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.UndeployModelRequest, dict]]): The request object. Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel]. name (:class:`str`): Required. Resource name of the model to undeploy. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.UndeployModelRequest): request = service.UndeployModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.undeploy_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def export_model( self, request: Optional[Union[service.ExportModelRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[io.ModelExportOutputConfig] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Exports a trained, "export-able", model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig]. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_export_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) output_config = automl_v1.ModelExportOutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportModelRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ExportModelRequest, dict]]): The request object. Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned. name (:class:`str`): Required. The resource name of the model to export. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. output_config (:class:`google.cloud.automl_v1.types.ModelExportOutputConfig`): Required. The desired output location and configuration. This corresponds to the ``output_config`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, output_config]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ExportModelRequest): request = service.ExportModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if output_config is not None: request.output_config = output_config # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.export_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=operations.OperationMetadata, ) # Done; return the response. return response
[docs] async def get_model_evaluation( self, request: Optional[Union[service.GetModelEvaluationRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> model_evaluation.ModelEvaluation: r"""Gets a model evaluation. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_model_evaluation(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetModelEvaluationRequest( name="name_value", ) # Make the request response = await client.get_model_evaluation(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.GetModelEvaluationRequest, dict]]): The request object. Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation]. name (:class:`str`): Required. Resource name for the model evaluation. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.types.ModelEvaluation: Evaluation results of a model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.GetModelEvaluationRequest): request = service.GetModelEvaluationRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_model_evaluation ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_model_evaluations( self, request: Optional[Union[service.ListModelEvaluationsRequest, dict]] = None, *, parent: Optional[str] = None, filter: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListModelEvaluationsAsyncPager: r"""Lists model evaluations. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_model_evaluations(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListModelEvaluationsRequest( parent="parent_value", filter="filter_value", ) # Make the request page_result = client.list_model_evaluations(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.automl_v1.types.ListModelEvaluationsRequest, dict]]): The request object. Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations]. parent (:class:`str`): Required. Resource name of the model to list the model evaluations for. If modelId is set as "-", this will list model evaluations from across all models of the parent location. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. filter (:class:`str`): Required. An expression for filtering the results of the request. - ``annotation_spec_id`` - for =, != or existence. See example below for the last. Some examples of using the filter are: - ``annotation_spec_id!=4`` --> The model evaluation was done for annotation spec with ID different than 4. - ``NOT annotation_spec_id:*`` --> The model evaluation was done for aggregate of all annotation specs. This corresponds to the ``filter`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsAsyncPager: Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, filter]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, service.ListModelEvaluationsRequest): request = service.ListModelEvaluationsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if filter is not None: request.filter = filter # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_model_evaluations ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListModelEvaluationsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
async def __aenter__(self) -> "AutoMlAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("AutoMlAsyncClient",)