AutoMl¶
- class google.cloud.automl_v1.services.auto_ml.AutoMlAsyncClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport, typing.Callable[[...], google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport]]] = 'grpc_asyncio', client_options: typing.Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
AutoML Server API.
The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.
An ID of a resource is the last element of the item’s resource name. For
projects/{project_id}/locations/{location_id}/datasets/{dataset_id}
, then the id for the item is{dataset_id}
.Currently the only supported
location_id
is “us-central1”.On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.
Instantiates the auto ml async client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,AutoMlTransport,Callable[..., AutoMlTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the AutoMlTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- static annotation_spec_path(project: str, location: str, dataset: str, annotation_spec: str) str ¶
Returns a fully-qualified annotation_spec string.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async create_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.CreateDatasetRequest, dict]] = None, *, parent: Optional[str] = None, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Creates a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_create_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.CreateDatasetRequest( parent="parent_value", dataset=dataset, ) # Make the request operation = client.create_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.CreateDatasetRequest, dict]]) – The request object. Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
parent (
str
) –Required. The resource name of the project to create the dataset for.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset (
google.cloud.automl_v1.types.Dataset
) – Required. The dataset to create. This corresponds to thedataset
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.automl_v1.types.Dataset
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- The result type for the operation will be
- Return type
- async create_model(request: Optional[Union[google.cloud.automl_v1.types.service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.automl_v1.types.model.Model] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Creates a model. Returns a Model in the [response][google.longrunning.Operation.response] field when it completes. When you create a model, several model evaluations are created for it: a global evaluation, and one evaluation for each annotation spec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_create_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.CreateModelRequest( parent="parent_value", ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.CreateModelRequest, dict]]) – The request object. Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
parent (
str
) –Required. Resource name of the parent project where the model is being created.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.model (
google.cloud.automl_v1.types.Model
) – Required. The model to create. This corresponds to themodel
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.cloud.automl_v1.types.Model
API proto representing a trained machine learning model.- Return type
- static dataset_path(project: str, location: str, dataset: str) str ¶
Returns a fully-qualified dataset string.
- async delete_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.DeleteDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Deletes a dataset and all of its contents. Returns empty response in the [response][google.longrunning.Operation.response] field when it completes, and
delete_details
in the [metadata][google.longrunning.Operation.metadata] field.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_delete_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeleteDatasetRequest( name="name_value", ) # Make the request operation = client.delete_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.DeleteDatasetRequest, dict]]) – The request object. Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
name (
str
) –Required. The resource name of the dataset to delete.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- async delete_model(request: Optional[Union[google.cloud.automl_v1.types.service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Deletes a model. Returns
google.protobuf.Empty
in the [response][google.longrunning.Operation.response] field when it completes, anddelete_details
in the [metadata][google.longrunning.Operation.metadata] field.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_delete_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeleteModelRequest( name="name_value", ) # Make the request operation = client.delete_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.DeleteModelRequest, dict]]) – The request object. Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
name (
str
) –Required. Resource name of the model being deleted.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- async deploy_model(request: Optional[Union[google.cloud.automl_v1.types.service.DeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number]) will reset the deployment state without pausing the model’s availability.
Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage deployment automatically.
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_deploy_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.DeployModelRequest( name="name_value", ) # Make the request operation = client.deploy_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.DeployModelRequest, dict]]) – The request object. Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
name (
str
) –Required. Resource name of the model to deploy.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- async export_data(request: Optional[Union[google.cloud.automl_v1.types.service.ExportDataRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.OutputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Exports dataset’s data to the provided output location. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_export_data(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) output_config = automl_v1.OutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportDataRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ExportDataRequest, dict]]) – The request object. Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
name (
str
) –Required. The resource name of the dataset.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.output_config (
google.cloud.automl_v1.types.OutputConfig
) –Required. The desired output location.
This corresponds to the
output_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- async export_model(request: Optional[Union[google.cloud.automl_v1.types.service.ExportModelRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.ModelExportOutputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Exports a trained, “export-able”, model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_export_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) output_config = automl_v1.ModelExportOutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportModelRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ExportModelRequest, dict]]) – The request object. Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
name (
str
) –Required. The resource name of the model to export.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.output_config (
google.cloud.automl_v1.types.ModelExportOutputConfig
) –Required. The desired output location and configuration.
This corresponds to the
output_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- async get_annotation_spec(request: Optional[Union[google.cloud.automl_v1.types.service.GetAnnotationSpecRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.annotation_spec.AnnotationSpec [source]¶
Gets an annotation spec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_annotation_spec(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetAnnotationSpecRequest( name="name_value", ) # Make the request response = await client.get_annotation_spec(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.GetAnnotationSpecRequest, dict]]) – The request object. Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
name (
str
) –Required. The resource name of the annotation spec to retrieve.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A definition of an annotation spec.
- Return type
- async get_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.GetDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.dataset.Dataset [source]¶
Gets a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetDatasetRequest( name="name_value", ) # Make the request response = await client.get_dataset(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.GetDatasetRequest, dict]]) – The request object. Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
name (
str
) –Required. The resource name of the dataset to retrieve.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- Return type
- async get_model(request: Optional[Union[google.cloud.automl_v1.types.service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model.Model [source]¶
Gets a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetModelRequest( name="name_value", ) # Make the request response = await client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.GetModelRequest, dict]]) – The request object. Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
name (
str
) – Required. Resource name of the model. This corresponds to thename
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
API proto representing a trained machine learning model.
- Return type
- async get_model_evaluation(request: Optional[Union[google.cloud.automl_v1.types.service.GetModelEvaluationRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model_evaluation.ModelEvaluation [source]¶
Gets a model evaluation.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_get_model_evaluation(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.GetModelEvaluationRequest( name="name_value", ) # Make the request response = await client.get_model_evaluation(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.GetModelEvaluationRequest, dict]]) – The request object. Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
name (
str
) –Required. Resource name for the model evaluation.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Evaluation results of a model.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- classmethod get_transport_class(label: Optional[str] = None) Type[google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport] ¶
Returns an appropriate transport class.
- Parameters
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns
The transport class to use.
- async import_data(request: Optional[Union[google.cloud.automl_v1.types.service.ImportDataRequest, dict]] = None, *, name: Optional[str] = None, input_config: Optional[google.cloud.automl_v1.types.io.InputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Imports data into a dataset. For Tables this method can only be called on an empty Dataset.
For Tables:
A [schema_inference_version][google.cloud.automl.v1.InputConfig.params] parameter must be explicitly set. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_import_data(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) input_config = automl_v1.InputConfig() input_config.gcs_source.input_uris = ['input_uris_value1', 'input_uris_value2'] request = automl_v1.ImportDataRequest( name="name_value", input_config=input_config, ) # Make the request operation = client.import_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ImportDataRequest, dict]]) – The request object. Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
name (
str
) –Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.input_config (
google.cloud.automl_v1.types.InputConfig
) –Required. The desired input location and its domain specific semantics, if any.
This corresponds to the
input_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- async list_datasets(request: Optional[Union[google.cloud.automl_v1.types.service.ListDatasetsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsAsyncPager [source]¶
Lists datasets in a project.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_datasets(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListDatasetsRequest( parent="parent_value", ) # Make the request page_result = client.list_datasets(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ListDatasetsRequest, dict]]) – The request object. Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
parent (
str
) –Required. The resource name of the project from which to list datasets.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsAsyncPager
- async list_model_evaluations(request: Optional[Union[google.cloud.automl_v1.types.service.ListModelEvaluationsRequest, dict]] = None, *, parent: Optional[str] = None, filter: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsAsyncPager [source]¶
Lists model evaluations.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_model_evaluations(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListModelEvaluationsRequest( parent="parent_value", filter="filter_value", ) # Make the request page_result = client.list_model_evaluations(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ListModelEvaluationsRequest, dict]]) – The request object. Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
parent (
str
) –Required. Resource name of the model to list the model evaluations for. If modelId is set as “-”, this will list model evaluations from across all models of the parent location.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.filter (
str
) –Required. An expression for filtering the results of the request.
annotation_spec_id
- for =, != or existence. See example below for the last.
Some examples of using the filter are:
annotation_spec_id!=4
–> The model evaluation was done for annotation spec with ID different than 4.NOT annotation_spec_id:*
–> The model evaluation was done for aggregate of all annotation specs.
This corresponds to the
filter
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsAsyncPager
- async list_models(request: Optional[Union[google.cloud.automl_v1.types.service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListModelsAsyncPager [source]¶
Lists models.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_list_models(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.ListModelsRequest, dict]]) – The request object. Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
parent (
str
) –Required. Resource name of the project, from which to list the models.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListModelsAsyncPager
- static model_evaluation_path(project: str, location: str, model: str, model_evaluation: str) str ¶
Returns a fully-qualified model_evaluation string.
- static model_path(project: str, location: str, model: str) str ¶
Returns a fully-qualified model string.
- static parse_annotation_spec_path(path: str) Dict[str, str] ¶
Parses a annotation_spec path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_dataset_path(path: str) Dict[str, str] ¶
Parses a dataset path into its component segments.
- static parse_model_evaluation_path(path: str) Dict[str, str] ¶
Parses a model_evaluation path into its component segments.
- static parse_model_path(path: str) Dict[str, str] ¶
Parses a model path into its component segments.
- property transport: google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport¶
Returns the transport used by the client instance.
- Returns
The transport used by the client instance.
- Return type
AutoMlTransport
- async undeploy_model(request: Optional[Union[google.cloud.automl_v1.types.service.UndeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Undeploys a model. If the model is not deployed this method has no effect.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_undeploy_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.UndeployModelRequest( name="name_value", ) # Make the request operation = client.undeploy_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.UndeployModelRequest, dict]]) – The request object. Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
name (
str
) –Required. Resource name of the model to undeploy.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
- The universe domain used
by the client instance.
- Return type
- async update_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.UpdateDatasetRequest, dict]] = None, *, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.dataset.Dataset [source]¶
Updates a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_update_dataset(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.UpdateDatasetRequest( dataset=dataset, ) # Make the request response = await client.update_dataset(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.UpdateDatasetRequest, dict]]) – The request object. Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
dataset (
google.cloud.automl_v1.types.Dataset
) –Required. The dataset which replaces the resource on the server.
This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The update mask applies to the resource.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- Return type
- async update_model(request: Optional[Union[google.cloud.automl_v1.types.service.UpdateModelRequest, dict]] = None, *, model: Optional[google.cloud.automl_v1.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model.Model [source]¶
Updates a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 async def sample_update_model(): # Create a client client = automl_v1.AutoMlAsyncClient() # Initialize request argument(s) request = automl_v1.UpdateModelRequest( ) # Make the request response = await client.update_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.automl_v1.types.UpdateModelRequest, dict]]) – The request object. Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]
model (
google.cloud.automl_v1.types.Model
) –Required. The model which replaces the resource on the server.
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The update mask applies to the resource.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
API proto representing a trained machine learning model.
- Return type
- class google.cloud.automl_v1.services.auto_ml.AutoMlClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport, typing.Callable[[...], google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
AutoML Server API.
The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.
An ID of a resource is the last element of the item’s resource name. For
projects/{project_id}/locations/{location_id}/datasets/{dataset_id}
, then the id for the item is{dataset_id}
.Currently the only supported
location_id
is “us-central1”.On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.
Instantiates the auto ml client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,AutoMlTransport,Callable[..., AutoMlTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the AutoMlTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- static annotation_spec_path(project: str, location: str, dataset: str, annotation_spec: str) str [source]¶
Returns a fully-qualified annotation_spec string.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- create_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.CreateDatasetRequest, dict]] = None, *, parent: Optional[str] = None, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Creates a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_create_dataset(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.CreateDatasetRequest( parent="parent_value", dataset=dataset, ) # Make the request operation = client.create_dataset(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.CreateDatasetRequest, dict]) – The request object. Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
parent (str) –
Required. The resource name of the project to create the dataset for.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset (google.cloud.automl_v1.types.Dataset) – Required. The dataset to create. This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.automl_v1.types.Dataset
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- The result type for the operation will be
- Return type
- create_model(request: Optional[Union[google.cloud.automl_v1.types.service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.automl_v1.types.model.Model] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Creates a model. Returns a Model in the [response][google.longrunning.Operation.response] field when it completes. When you create a model, several model evaluations are created for it: a global evaluation, and one evaluation for each annotation spec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_create_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.CreateModelRequest( parent="parent_value", ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.CreateModelRequest, dict]) – The request object. Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
parent (str) –
Required. Resource name of the parent project where the model is being created.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.model (google.cloud.automl_v1.types.Model) – Required. The model to create. This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.cloud.automl_v1.types.Model
API proto representing a trained machine learning model.- Return type
- static dataset_path(project: str, location: str, dataset: str) str [source]¶
Returns a fully-qualified dataset string.
- delete_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.DeleteDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Deletes a dataset and all of its contents. Returns empty response in the [response][google.longrunning.Operation.response] field when it completes, and
delete_details
in the [metadata][google.longrunning.Operation.metadata] field.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_delete_dataset(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.DeleteDatasetRequest( name="name_value", ) # Make the request operation = client.delete_dataset(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.DeleteDatasetRequest, dict]) – The request object. Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
name (str) –
Required. The resource name of the dataset to delete.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- delete_model(request: Optional[Union[google.cloud.automl_v1.types.service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Deletes a model. Returns
google.protobuf.Empty
in the [response][google.longrunning.Operation.response] field when it completes, anddelete_details
in the [metadata][google.longrunning.Operation.metadata] field.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_delete_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.DeleteModelRequest( name="name_value", ) # Make the request operation = client.delete_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.DeleteModelRequest, dict]) – The request object. Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
name (str) –
Required. Resource name of the model being deleted.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- deploy_model(request: Optional[Union[google.cloud.automl_v1.types.service.DeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number]) will reset the deployment state without pausing the model’s availability.
Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage deployment automatically.
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_deploy_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.DeployModelRequest( name="name_value", ) # Make the request operation = client.deploy_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.DeployModelRequest, dict]) – The request object. Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
name (str) –
Required. Resource name of the model to deploy.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- export_data(request: Optional[Union[google.cloud.automl_v1.types.service.ExportDataRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.OutputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Exports dataset’s data to the provided output location. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_export_data(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) output_config = automl_v1.OutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportDataRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_data(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ExportDataRequest, dict]) – The request object. Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
name (str) –
Required. The resource name of the dataset.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.output_config (google.cloud.automl_v1.types.OutputConfig) –
Required. The desired output location.
This corresponds to the
output_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- export_model(request: Optional[Union[google.cloud.automl_v1.types.service.ExportModelRequest, dict]] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.ModelExportOutputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Exports a trained, “export-able”, model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_export_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) output_config = automl_v1.ModelExportOutputConfig() output_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = automl_v1.ExportModelRequest( name="name_value", output_config=output_config, ) # Make the request operation = client.export_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ExportModelRequest, dict]) – The request object. Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
name (str) –
Required. The resource name of the model to export.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.output_config (google.cloud.automl_v1.types.ModelExportOutputConfig) –
Required. The desired output location and configuration.
This corresponds to the
output_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- get_annotation_spec(request: Optional[Union[google.cloud.automl_v1.types.service.GetAnnotationSpecRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.annotation_spec.AnnotationSpec [source]¶
Gets an annotation spec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_get_annotation_spec(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.GetAnnotationSpecRequest( name="name_value", ) # Make the request response = client.get_annotation_spec(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.GetAnnotationSpecRequest, dict]) – The request object. Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
name (str) –
Required. The resource name of the annotation spec to retrieve.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A definition of an annotation spec.
- Return type
- get_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.GetDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.dataset.Dataset [source]¶
Gets a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_get_dataset(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.GetDatasetRequest( name="name_value", ) # Make the request response = client.get_dataset(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.GetDatasetRequest, dict]) – The request object. Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
name (str) –
Required. The resource name of the dataset to retrieve.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- Return type
- get_model(request: Optional[Union[google.cloud.automl_v1.types.service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model.Model [source]¶
Gets a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_get_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.GetModelRequest( name="name_value", ) # Make the request response = client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.GetModelRequest, dict]) – The request object. Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
name (str) – Required. Resource name of the model. This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
API proto representing a trained machine learning model.
- Return type
- get_model_evaluation(request: Optional[Union[google.cloud.automl_v1.types.service.GetModelEvaluationRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model_evaluation.ModelEvaluation [source]¶
Gets a model evaluation.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_get_model_evaluation(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.GetModelEvaluationRequest( name="name_value", ) # Make the request response = client.get_model_evaluation(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.GetModelEvaluationRequest, dict]) – The request object. Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
name (str) –
Required. Resource name for the model evaluation.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Evaluation results of a model.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- import_data(request: Optional[Union[google.cloud.automl_v1.types.service.ImportDataRequest, dict]] = None, *, name: Optional[str] = None, input_config: Optional[google.cloud.automl_v1.types.io.InputConfig] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Imports data into a dataset. For Tables this method can only be called on an empty Dataset.
For Tables:
A [schema_inference_version][google.cloud.automl.v1.InputConfig.params] parameter must be explicitly set. Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_import_data(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) input_config = automl_v1.InputConfig() input_config.gcs_source.input_uris = ['input_uris_value1', 'input_uris_value2'] request = automl_v1.ImportDataRequest( name="name_value", input_config=input_config, ) # Make the request operation = client.import_data(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ImportDataRequest, dict]) – The request object. Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
name (str) –
Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.input_config (google.cloud.automl_v1.types.InputConfig) –
Required. The desired input location and its domain specific semantics, if any.
This corresponds to the
input_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- list_datasets(request: Optional[Union[google.cloud.automl_v1.types.service.ListDatasetsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsPager [source]¶
Lists datasets in a project.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_list_datasets(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.ListDatasetsRequest( parent="parent_value", ) # Make the request page_result = client.list_datasets(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ListDatasetsRequest, dict]) – The request object. Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
parent (str) –
Required. The resource name of the project from which to list datasets.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsPager
- list_model_evaluations(request: Optional[Union[google.cloud.automl_v1.types.service.ListModelEvaluationsRequest, dict]] = None, *, parent: Optional[str] = None, filter: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsPager [source]¶
Lists model evaluations.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_list_model_evaluations(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.ListModelEvaluationsRequest( parent="parent_value", filter="filter_value", ) # Make the request page_result = client.list_model_evaluations(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ListModelEvaluationsRequest, dict]) – The request object. Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
parent (str) –
Required. Resource name of the model to list the model evaluations for. If modelId is set as “-”, this will list model evaluations from across all models of the parent location.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.filter (str) –
Required. An expression for filtering the results of the request.
annotation_spec_id
- for =, != or existence. See example below for the last.
Some examples of using the filter are:
annotation_spec_id!=4
–> The model evaluation was done for annotation spec with ID different than 4.NOT annotation_spec_id:*
–> The model evaluation was done for aggregate of all annotation specs.
This corresponds to the
filter
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsPager
- list_models(request: Optional[Union[google.cloud.automl_v1.types.service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.services.auto_ml.pagers.ListModelsPager [source]¶
Lists models.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_list_models(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.ListModelsRequest, dict]) – The request object. Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
parent (str) –
Required. Resource name of the project, from which to list the models.
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.automl_v1.services.auto_ml.pagers.ListModelsPager
- static model_evaluation_path(project: str, location: str, model: str, model_evaluation: str) str [source]¶
Returns a fully-qualified model_evaluation string.
- static model_path(project: str, location: str, model: str) str [source]¶
Returns a fully-qualified model string.
- static parse_annotation_spec_path(path: str) Dict[str, str] [source]¶
Parses a annotation_spec path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_dataset_path(path: str) Dict[str, str] [source]¶
Parses a dataset path into its component segments.
- static parse_model_evaluation_path(path: str) Dict[str, str] [source]¶
Parses a model_evaluation path into its component segments.
- static parse_model_path(path: str) Dict[str, str] [source]¶
Parses a model path into its component segments.
- property transport: google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport¶
Returns the transport used by the client instance.
- Returns
- The transport used by the client
instance.
- Return type
AutoMlTransport
- undeploy_model(request: Optional[Union[google.cloud.automl_v1.types.service.UndeployModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Undeploys a model. If the model is not deployed this method has no effect.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the [response][google.longrunning.Operation.response] field when it completes.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_undeploy_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.UndeployModelRequest( name="name_value", ) # Make the request operation = client.undeploy_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.UndeployModelRequest, dict]) – The request object. Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
name (str) –
Required. Resource name of the model to undeploy.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
The universe domain used by the client instance.
- Return type
- update_dataset(request: Optional[Union[google.cloud.automl_v1.types.service.UpdateDatasetRequest, dict]] = None, *, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.dataset.Dataset [source]¶
Updates a dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_update_dataset(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) dataset = automl_v1.Dataset() dataset.translation_dataset_metadata.source_language_code = "source_language_code_value" dataset.translation_dataset_metadata.target_language_code = "target_language_code_value" request = automl_v1.UpdateDatasetRequest( dataset=dataset, ) # Make the request response = client.update_dataset(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.UpdateDatasetRequest, dict]) – The request object. Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
dataset (google.cloud.automl_v1.types.Dataset) –
Required. The dataset which replaces the resource on the server.
This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The update mask applies to the resource.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
- Return type
- update_model(request: Optional[Union[google.cloud.automl_v1.types.service.UpdateModelRequest, dict]] = None, *, model: Optional[google.cloud.automl_v1.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.automl_v1.types.model.Model [source]¶
Updates a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import automl_v1 def sample_update_model(): # Create a client client = automl_v1.AutoMlClient() # Initialize request argument(s) request = automl_v1.UpdateModelRequest( ) # Make the request response = client.update_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.automl_v1.types.UpdateModelRequest, dict]) – The request object. Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]
model (google.cloud.automl_v1.types.Model) –
Required. The model which replaces the resource on the server.
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The update mask applies to the resource.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
API proto representing a trained machine learning model.
- Return type
- class google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsAsyncPager(method: Callable[[...], Awaitable[google.cloud.automl_v1.types.service.ListDatasetsResponse]], request: google.cloud.automl_v1.types.service.ListDatasetsRequest, response: google.cloud.automl_v1.types.service.ListDatasetsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_datasets
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListDatasetsResponse
object, and provides an__aiter__
method to iterate through itsdatasets
field.If there are more pages, the
__aiter__
method will make additionalListDatasets
requests and continue to iterate through thedatasets
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListDatasetsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListDatasetsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListDatasetsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsPager(method: Callable[[...], google.cloud.automl_v1.types.service.ListDatasetsResponse], request: google.cloud.automl_v1.types.service.ListDatasetsRequest, response: google.cloud.automl_v1.types.service.ListDatasetsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_datasets
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListDatasetsResponse
object, and provides an__iter__
method to iterate through itsdatasets
field.If there are more pages, the
__iter__
method will make additionalListDatasets
requests and continue to iterate through thedatasets
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListDatasetsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListDatasetsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListDatasetsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsAsyncPager(method: Callable[[...], Awaitable[google.cloud.automl_v1.types.service.ListModelEvaluationsResponse]], request: google.cloud.automl_v1.types.service.ListModelEvaluationsRequest, response: google.cloud.automl_v1.types.service.ListModelEvaluationsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_model_evaluations
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListModelEvaluationsResponse
object, and provides an__aiter__
method to iterate through itsmodel_evaluation
field.If there are more pages, the
__aiter__
method will make additionalListModelEvaluations
requests and continue to iterate through themodel_evaluation
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListModelEvaluationsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListModelEvaluationsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListModelEvaluationsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsPager(method: Callable[[...], google.cloud.automl_v1.types.service.ListModelEvaluationsResponse], request: google.cloud.automl_v1.types.service.ListModelEvaluationsRequest, response: google.cloud.automl_v1.types.service.ListModelEvaluationsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_model_evaluations
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListModelEvaluationsResponse
object, and provides an__iter__
method to iterate through itsmodel_evaluation
field.If there are more pages, the
__iter__
method will make additionalListModelEvaluations
requests and continue to iterate through themodel_evaluation
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListModelEvaluationsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListModelEvaluationsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListModelEvaluationsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.automl_v1.services.auto_ml.pagers.ListModelsAsyncPager(method: Callable[[...], Awaitable[google.cloud.automl_v1.types.service.ListModelsResponse]], request: google.cloud.automl_v1.types.service.ListModelsRequest, response: google.cloud.automl_v1.types.service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListModelsResponse
object, and provides an__aiter__
method to iterate through itsmodel
field.If there are more pages, the
__aiter__
method will make additionalListModels
requests and continue to iterate through themodel
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListModelsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.automl_v1.services.auto_ml.pagers.ListModelsPager(method: Callable[[...], google.cloud.automl_v1.types.service.ListModelsResponse], request: google.cloud.automl_v1.types.service.ListModelsRequest, response: google.cloud.automl_v1.types.service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.cloud.automl_v1.types.ListModelsResponse
object, and provides an__iter__
method to iterate through itsmodel
field.If there are more pages, the
__iter__
method will make additionalListModels
requests and continue to iterate through themodel
field on the corresponding responses.All the usual
google.cloud.automl_v1.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.automl_v1.types.ListModelsRequest) – The initial request object.
response (google.cloud.automl_v1.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.