As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.ai.generativelanguage_v1beta.services.generative_service.async_client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import re
from typing import (
    AsyncIterable,
    Awaitable,
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.longrunning import operations_pb2  # type: ignore

from google.ai.generativelanguage_v1beta.types import generative_service, safety
from google.ai.generativelanguage_v1beta.types import content
from google.ai.generativelanguage_v1beta.types import content as gag_content

from .client import GenerativeServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, GenerativeServiceTransport
from .transports.grpc_asyncio import GenerativeServiceGrpcAsyncIOTransport

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)


[docs]class GenerativeServiceAsyncClient: """API for using Large Models that generate multimodal content and have additional capabilities beyond text generation. """ _client: GenerativeServiceClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = GenerativeServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = GenerativeServiceClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = GenerativeServiceClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = GenerativeServiceClient._DEFAULT_UNIVERSE cached_content_path = staticmethod(GenerativeServiceClient.cached_content_path) parse_cached_content_path = staticmethod( GenerativeServiceClient.parse_cached_content_path ) model_path = staticmethod(GenerativeServiceClient.model_path) parse_model_path = staticmethod(GenerativeServiceClient.parse_model_path) common_billing_account_path = staticmethod( GenerativeServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( GenerativeServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(GenerativeServiceClient.common_folder_path) parse_common_folder_path = staticmethod( GenerativeServiceClient.parse_common_folder_path ) common_organization_path = staticmethod( GenerativeServiceClient.common_organization_path ) parse_common_organization_path = staticmethod( GenerativeServiceClient.parse_common_organization_path ) common_project_path = staticmethod(GenerativeServiceClient.common_project_path) parse_common_project_path = staticmethod( GenerativeServiceClient.parse_common_project_path ) common_location_path = staticmethod(GenerativeServiceClient.common_location_path) parse_common_location_path = staticmethod( GenerativeServiceClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceAsyncClient: The constructed client. """ return GenerativeServiceClient.from_service_account_info.__func__(GenerativeServiceAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceAsyncClient: The constructed client. """ return GenerativeServiceClient.from_service_account_file.__func__(GenerativeServiceAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return GenerativeServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> GenerativeServiceTransport: """Returns the transport used by the client instance. Returns: GenerativeServiceTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = GenerativeServiceClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[ str, GenerativeServiceTransport, Callable[..., GenerativeServiceTransport], ] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the generative service async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,GenerativeServiceTransport,Callable[..., GenerativeServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the GenerativeServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = GenerativeServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor( std_logging.DEBUG ): # pragma: NO COVER _LOGGER.debug( "Created client `google.ai.generativelanguage_v1beta.GenerativeServiceAsyncClient`.", extra={ "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "universeDomain": getattr( self._client._transport._credentials, "universe_domain", "" ), "credentialsType": f"{type(self._client._transport._credentials).__module__}.{type(self._client._transport._credentials).__qualname__}", "credentialsInfo": getattr( self.transport._credentials, "get_cred_info", lambda: None )(), } if hasattr(self._client._transport, "_credentials") else { "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "credentialsType": None, }, )
[docs] async def generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateContentResponse: r"""Generates a model response given an input ``GenerateContentRequest``. Refer to the `text generation guide <https://ai.google.dev/gemini-api/docs/text-generation>`__ for detailed usage information. Input capabilities differ between models, including tuned models. Refer to the `model guide <https://ai.google.dev/gemini-api/docs/models/gemini>`__ and `tuning guide <https://ai.google.dev/gemini-api/docs/model-tuning>`__ for details. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request response = await client.generate_content(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]): The request object. Request to generate a completion from the model. model (:class:`str`): Required. The name of the ``Model`` to use for generating the completion. Format: ``name=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateContentResponse: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def generate_answer( self, request: Optional[Union[generative_service.GenerateAnswerRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, safety_settings: Optional[MutableSequence[safety.SafetySetting]] = None, answer_style: Optional[ generative_service.GenerateAnswerRequest.AnswerStyle ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateAnswerResponse: r"""Generates a grounded answer from the model given an input ``GenerateAnswerRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_answer(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateAnswerRequest( model="model_value", answer_style="VERBOSE", ) # Make the request response = await client.generate_answer(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest, dict]]): The request object. Request to generate a grounded answer from the ``Model``. model (:class:`str`): Required. The name of the ``Model`` to use for generating the grounded response. Format: ``model=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the ``Model``. For single-turn queries, this is a single question to answer. For multi-turn queries, this is a repeated field that contains conversation history and the last ``Content`` in the list containing the question. Note: ``GenerateAnswer`` only supports queries in English. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. safety_settings (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.SafetySetting]`): Optional. A list of unique ``SafetySetting`` instances for blocking unsafe content. This will be enforced on the ``GenerateAnswerRequest.contents`` and ``GenerateAnswerResponse.candidate``. There should not be more than one setting for each ``SafetyCategory`` type. The API will block any contents and responses that fail to meet the thresholds set by these settings. This list overrides the default settings for each ``SafetyCategory`` specified in the safety_settings. If there is no ``SafetySetting`` for a given ``SafetyCategory`` provided in the list, the API will use the default safety setting for that category. Harm categories HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT are supported. Refer to the `guide <https://ai.google.dev/gemini-api/docs/safety-settings>`__ for detailed information on available safety settings. Also refer to the `Safety guidance <https://ai.google.dev/gemini-api/docs/safety-guidance>`__ to learn how to incorporate safety considerations in your AI applications. This corresponds to the ``safety_settings`` field on the ``request`` instance; if ``request`` is provided, this should not be set. answer_style (:class:`google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest.AnswerStyle`): Required. Style in which answers should be returned. This corresponds to the ``answer_style`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateAnswerResponse: Response from the model for a grounded answer. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents, safety_settings, answer_style]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateAnswerRequest): request = generative_service.GenerateAnswerRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if answer_style is not None: request.answer_style = answer_style if contents: request.contents.extend(contents) if safety_settings: request.safety_settings.extend(safety_settings) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_answer ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def stream_generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> Awaitable[AsyncIterable[generative_service.GenerateContentResponse]]: r"""Generates a `streamed response <https://ai.google.dev/gemini-api/docs/text-generation?lang=python#generate-a-text-stream>`__ from the model given an input ``GenerateContentRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_stream_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request stream = await client.stream_generate_content(request=request) # Handle the response async for response in stream: print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]): The request object. Request to generate a completion from the model. model (:class:`str`): Required. The name of the ``Model`` to use for generating the completion. Format: ``name=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: AsyncIterable[google.ai.generativelanguage_v1beta.types.GenerateContentResponse]: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.stream_generate_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def embed_content( self, request: Optional[Union[generative_service.EmbedContentRequest, dict]] = None, *, model: Optional[str] = None, content: Optional[gag_content.Content] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.EmbedContentResponse: r"""Generates a text embedding vector from the input ``Content`` using the specified `Gemini Embedding model <https://ai.google.dev/gemini-api/docs/models/gemini#text-embedding>`__. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_embed_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedContentRequest( model="model_value", ) # Make the request response = await client.embed_content(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.EmbedContentRequest, dict]]): The request object. Request containing the ``Content`` for the model to embed. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. content (:class:`google.ai.generativelanguage_v1beta.types.Content`): Required. The content to embed. Only the ``parts.text`` fields will be counted. This corresponds to the ``content`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.EmbedContentResponse: The response to an EmbedContentRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, content]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.EmbedContentRequest): request = generative_service.EmbedContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if content is not None: request.content = content # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.embed_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def batch_embed_contents( self, request: Optional[ Union[generative_service.BatchEmbedContentsRequest, dict] ] = None, *, model: Optional[str] = None, requests: Optional[ MutableSequence[generative_service.EmbedContentRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.BatchEmbedContentsResponse: r"""Generates multiple embedding vectors from the input ``Content`` which consists of a batch of strings represented as ``EmbedContentRequest`` objects. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_embed_contents(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.EmbedContentRequest() requests.model = "model_value" request = generativelanguage_v1beta.BatchEmbedContentsRequest( model="model_value", requests=requests, ) # Make the request response = await client.batch_embed_contents(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchEmbedContentsRequest, dict]]): The request object. Batch request to get embeddings from the model for a list of prompts. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. requests (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.EmbedContentRequest]`): Required. Embed requests for the batch. The model in each of these requests must match the model specified ``BatchEmbedContentsRequest.model``. This corresponds to the ``requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.BatchEmbedContentsResponse: The response to a BatchEmbedContentsRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, requests]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.BatchEmbedContentsRequest): request = generative_service.BatchEmbedContentsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if requests: request.requests.extend(requests) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.batch_embed_contents ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def count_tokens( self, request: Optional[Union[generative_service.CountTokensRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.CountTokensResponse: r"""Runs a model's tokenizer on input ``Content`` and returns the token count. Refer to the `tokens guide <https://ai.google.dev/gemini-api/docs/tokens>`__ to learn more about tokens. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_count_tokens(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.CountTokensRequest( model="model_value", ) # Make the request response = await client.count_tokens(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.CountTokensRequest, dict]]): The request object. Counts the number of tokens in the ``prompt`` sent to a model. Models may tokenize text differently, so each model may return a different ``token_count``. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Optional. The input given to the model as a prompt. This field is ignored when ``generate_content_request`` is set. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.CountTokensResponse: A response from CountTokens. It returns the model's token_count for the prompt. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.CountTokensRequest): request = generative_service.CountTokensRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.count_tokens ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
async def __aenter__(self) -> "GenerativeServiceAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("GenerativeServiceAsyncClient",)