GenerativeService¶
- class google.ai.generativelanguage_v1beta.services.generative_service.GenerativeServiceAsyncClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport]]] = 'grpc_asyncio', client_options: typing.Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
API for using Large Models that generate multimodal content and have additional capabilities beyond text generation.
Instantiates the generative service async client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,GenerativeServiceTransport,Callable[..., GenerativeServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the GenerativeServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- async batch_embed_contents(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.BatchEmbedContentsRequest, dict]] = None, *, model: Optional[str] = None, requests: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentRequest]] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.BatchEmbedContentsResponse [source]¶
Generates multiple embedding vectors from the input
Content
which consists of a batch of strings represented asEmbedContentRequest
objects.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_embed_contents(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.EmbedContentRequest() requests.model = "model_value" request = generativelanguage_v1beta.BatchEmbedContentsRequest( model="model_value", requests=requests, ) # Make the request response = await client.batch_embed_contents(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchEmbedContentsRequest, dict]]) – The request object. Batch request to get embeddings from the model for a list of prompts.
model (
str
) –Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.requests (
MutableSequence[google.ai.generativelanguage_v1beta.types.EmbedContentRequest]
) –Required. Embed requests for the batch. The model in each of these requests must match the model specified
BatchEmbedContentsRequest.model
.This corresponds to the
requests
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
The response to a BatchEmbedContentsRequest.
- Return type
google.ai.generativelanguage_v1beta.types.BatchEmbedContentsResponse
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async count_tokens(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.CountTokensRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.CountTokensResponse [source]¶
Runs a model’s tokenizer on input
Content
and returns the token count. Refer to the tokens guide to learn more about tokens.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_count_tokens(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.CountTokensRequest( model="model_value", ) # Make the request response = await client.count_tokens(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.CountTokensRequest, dict]]) –
The request object. Counts the number of tokens in the
prompt
sent to a model.Models may tokenize text differently, so each model may return a different
token_count
.model (
str
) –Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (
MutableSequence[google.ai.generativelanguage_v1beta.types.Content]
) –Optional. The input given to the model as a prompt. This field is ignored when
generate_content_request
is set.This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A response from CountTokens.
It returns the model’s token_count for the prompt.
- Return type
google.ai.generativelanguage_v1beta.types.CountTokensResponse
- async embed_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentRequest, dict]] = None, *, model: Optional[str] = None, content: Optional[google.ai.generativelanguage_v1beta.types.content.Content] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentResponse [source]¶
Generates a text embedding vector from the input
Content
using the specified Gemini Embedding model.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_embed_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedContentRequest( model="model_value", ) # Make the request response = await client.embed_content(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.EmbedContentRequest, dict]]) – The request object. Request containing the
Content
for the model to embed.model (
str
) –Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.content (
google.ai.generativelanguage_v1beta.types.Content
) –Required. The content to embed. Only the
parts.text
fields will be counted.This corresponds to the
content
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
The response to an EmbedContentRequest.
- Return type
google.ai.generativelanguage_v1beta.types.EmbedContentResponse
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- async generate_answer(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, safety_settings: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.safety.SafetySetting]] = None, answer_style: Optional[google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerRequest.AnswerStyle] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerResponse [source]¶
Generates a grounded answer from the model given an input
GenerateAnswerRequest
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_answer(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateAnswerRequest( model="model_value", answer_style="VERBOSE", ) # Make the request response = await client.generate_answer(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest, dict]]) – The request object. Request to generate a grounded answer from the
Model
.model (
str
) –Required. The name of the
Model
to use for generating the grounded response.Format:
model=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (
MutableSequence[google.ai.generativelanguage_v1beta.types.Content]
) –Required. The content of the current conversation with the
Model
. For single-turn queries, this is a single question to answer. For multi-turn queries, this is a repeated field that contains conversation history and the lastContent
in the list containing the question.Note:
GenerateAnswer
only supports queries in English.This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.safety_settings (
MutableSequence[google.ai.generativelanguage_v1beta.types.SafetySetting]
) –Optional. A list of unique
SafetySetting
instances for blocking unsafe content.This will be enforced on the
GenerateAnswerRequest.contents
andGenerateAnswerResponse.candidate
. There should not be more than one setting for eachSafetyCategory
type. The API will block any contents and responses that fail to meet the thresholds set by these settings. This list overrides the default settings for eachSafetyCategory
specified in the safety_settings. If there is noSafetySetting
for a givenSafetyCategory
provided in the list, the API will use the default safety setting for that category. Harm categories HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT are supported. Refer to the guide for detailed information on available safety settings. Also refer to the Safety guidance to learn how to incorporate safety considerations in your AI applications.This corresponds to the
safety_settings
field on therequest
instance; ifrequest
is provided, this should not be set.answer_style (
google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest.AnswerStyle
) –Required. Style in which answers should be returned.
This corresponds to the
answer_style
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model for a grounded answer.
- Return type
google.ai.generativelanguage_v1beta.types.GenerateAnswerResponse
- async generate_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentResponse [source]¶
Generates a model response given an input
GenerateContentRequest
. Refer to the text generation guide for detailed usage information. Input capabilities differ between models, including tuned models. Refer to the model guide and tuning guide for details.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request response = await client.generate_content(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]) – The request object. Request to generate a completion from the model.
model (
str
) –Required. The name of the
Model
to use for generating the completion.Format:
name=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (
MutableSequence[google.ai.generativelanguage_v1beta.types.Content]
) –Required. The content of the current conversation with the model.
For single-turn queries, this is a single instance. For multi-turn queries like chat, this is a repeated field that contains the conversation history and the latest request.
This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model supporting multiple candidate responses.
Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings.
- Return type
google.ai.generativelanguage_v1beta.types.GenerateContentResponse
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- classmethod get_transport_class(label: Optional[str] = None) Type[google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport] ¶
Returns an appropriate transport class.
- Parameters
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns
The transport class to use.
- static parse_cached_content_path(path: str) Dict[str, str] ¶
Parses a cached_content path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] ¶
Parses a model path into its component segments.
- stream_generate_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Awaitable[AsyncIterable[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentResponse]] [source]¶
Generates a streamed response from the model given an input
GenerateContentRequest
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_stream_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request stream = await client.stream_generate_content(request=request) # Handle the response async for response in stream: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]) – The request object. Request to generate a completion from the model.
model (
str
) –Required. The name of the
Model
to use for generating the completion.Format:
name=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (
MutableSequence[google.ai.generativelanguage_v1beta.types.Content]
) –Required. The content of the current conversation with the model.
For single-turn queries, this is a single instance. For multi-turn queries like chat, this is a repeated field that contains the conversation history and the latest request.
This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model supporting multiple candidate responses.
Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings.
- Return type
AsyncIterable[google.ai.generativelanguage_v1beta.types.GenerateContentResponse]
- property transport: google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport¶
Returns the transport used by the client instance.
- Returns
The transport used by the client instance.
- Return type
GenerativeServiceTransport
- class google.ai.generativelanguage_v1beta.services.generative_service.GenerativeServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
API for using Large Models that generate multimodal content and have additional capabilities beyond text generation.
Instantiates the generative service client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,GenerativeServiceTransport,Callable[..., GenerativeServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the GenerativeServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- batch_embed_contents(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.BatchEmbedContentsRequest, dict]] = None, *, model: Optional[str] = None, requests: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentRequest]] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.BatchEmbedContentsResponse [source]¶
Generates multiple embedding vectors from the input
Content
which consists of a batch of strings represented asEmbedContentRequest
objects.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_batch_embed_contents(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) requests = generativelanguage_v1beta.EmbedContentRequest() requests.model = "model_value" request = generativelanguage_v1beta.BatchEmbedContentsRequest( model="model_value", requests=requests, ) # Make the request response = client.batch_embed_contents(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.BatchEmbedContentsRequest, dict]) – The request object. Batch request to get embeddings from the model for a list of prompts.
model (str) –
Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.requests (MutableSequence[google.ai.generativelanguage_v1beta.types.EmbedContentRequest]) –
Required. Embed requests for the batch. The model in each of these requests must match the model specified
BatchEmbedContentsRequest.model
.This corresponds to the
requests
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
The response to a BatchEmbedContentsRequest.
- Return type
google.ai.generativelanguage_v1beta.types.BatchEmbedContentsResponse
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- count_tokens(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.CountTokensRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.CountTokensResponse [source]¶
Runs a model’s tokenizer on input
Content
and returns the token count. Refer to the tokens guide to learn more about tokens.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_count_tokens(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.CountTokensRequest( model="model_value", ) # Make the request response = client.count_tokens(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.CountTokensRequest, dict]) –
The request object. Counts the number of tokens in the
prompt
sent to a model.Models may tokenize text differently, so each model may return a different
token_count
.model (str) –
Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]) –
Optional. The input given to the model as a prompt. This field is ignored when
generate_content_request
is set.This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A response from CountTokens.
It returns the model’s token_count for the prompt.
- Return type
google.ai.generativelanguage_v1beta.types.CountTokensResponse
- embed_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentRequest, dict]] = None, *, model: Optional[str] = None, content: Optional[google.ai.generativelanguage_v1beta.types.content.Content] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.EmbedContentResponse [source]¶
Generates a text embedding vector from the input
Content
using the specified Gemini Embedding model.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_embed_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedContentRequest( model="model_value", ) # Make the request response = client.embed_content(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.EmbedContentRequest, dict]) – The request object. Request containing the
Content
for the model to embed.model (str) –
Required. The model’s resource name. This serves as an ID for the Model to use.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.content (google.ai.generativelanguage_v1beta.types.Content) –
Required. The content to embed. Only the
parts.text
fields will be counted.This corresponds to the
content
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
The response to an EmbedContentRequest.
- Return type
google.ai.generativelanguage_v1beta.types.EmbedContentResponse
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- generate_answer(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, safety_settings: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.safety.SafetySetting]] = None, answer_style: Optional[google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerRequest.AnswerStyle] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.GenerateAnswerResponse [source]¶
Generates a grounded answer from the model given an input
GenerateAnswerRequest
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_generate_answer(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateAnswerRequest( model="model_value", answer_style="VERBOSE", ) # Make the request response = client.generate_answer(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest, dict]) – The request object. Request to generate a grounded answer from the
Model
.model (str) –
Required. The name of the
Model
to use for generating the grounded response.Format:
model=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]) –
Required. The content of the current conversation with the
Model
. For single-turn queries, this is a single question to answer. For multi-turn queries, this is a repeated field that contains conversation history and the lastContent
in the list containing the question.Note:
GenerateAnswer
only supports queries in English.This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.safety_settings (MutableSequence[google.ai.generativelanguage_v1beta.types.SafetySetting]) –
Optional. A list of unique
SafetySetting
instances for blocking unsafe content.This will be enforced on the
GenerateAnswerRequest.contents
andGenerateAnswerResponse.candidate
. There should not be more than one setting for eachSafetyCategory
type. The API will block any contents and responses that fail to meet the thresholds set by these settings. This list overrides the default settings for eachSafetyCategory
specified in the safety_settings. If there is noSafetySetting
for a givenSafetyCategory
provided in the list, the API will use the default safety setting for that category. Harm categories HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT are supported. Refer to the guide for detailed information on available safety settings. Also refer to the Safety guidance to learn how to incorporate safety considerations in your AI applications.This corresponds to the
safety_settings
field on therequest
instance; ifrequest
is provided, this should not be set.answer_style (google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest.AnswerStyle) –
Required. Style in which answers should be returned.
This corresponds to the
answer_style
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model for a grounded answer.
- Return type
google.ai.generativelanguage_v1beta.types.GenerateAnswerResponse
- generate_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentResponse [source]¶
Generates a model response given an input
GenerateContentRequest
. Refer to the text generation guide for detailed usage information. Input capabilities differ between models, including tuned models. Refer to the model guide and tuning guide for details.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request response = client.generate_content(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]) – The request object. Request to generate a completion from the model.
model (str) –
Required. The name of the
Model
to use for generating the completion.Format:
name=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]) –
Required. The content of the current conversation with the model.
For single-turn queries, this is a single instance. For multi-turn queries like chat, this is a repeated field that contains the conversation history and the latest request.
This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model supporting multiple candidate responses.
Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings.
- Return type
google.ai.generativelanguage_v1beta.types.GenerateContentResponse
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- static parse_cached_content_path(path: str) Dict[str, str] [source]¶
Parses a cached_content path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] [source]¶
Parses a model path into its component segments.
- stream_generate_content(request: Optional[Union[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[google.ai.generativelanguage_v1beta.types.content.Content]] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Iterable[google.ai.generativelanguage_v1beta.types.generative_service.GenerateContentResponse] [source]¶
Generates a streamed response from the model given an input
GenerateContentRequest
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_stream_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request stream = client.stream_generate_content(request=request) # Handle the response for response in stream: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]) – The request object. Request to generate a completion from the model.
model (str) –
Required. The name of the
Model
to use for generating the completion.Format:
name=models/{model}
.This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]) –
Required. The content of the current conversation with the model.
For single-turn queries, this is a single instance. For multi-turn queries like chat, this is a repeated field that contains the conversation history and the latest request.
This corresponds to the
contents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from the model supporting multiple candidate responses.
Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings.
- Return type
Iterable[google.ai.generativelanguage_v1beta.types.GenerateContentResponse]
- property transport: google.ai.generativelanguage_v1beta.services.generative_service.transports.base.GenerativeServiceTransport¶
Returns the transport used by the client instance.
- Returns
- The transport used by the client
instance.
- Return type
GenerativeServiceTransport