ModelService¶
- class google.ai.generativelanguage_v1beta.services.model_service.ModelServiceAsyncClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport]]] = 'grpc_asyncio', client_options: typing.Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Provides methods for getting metadata information about Generative Models.
Instantiates the model service async client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,ModelServiceTransport,Callable[..., ModelServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the ModelServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async create_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.CreateTunedModelRequest, dict]] = None, *, tuned_model: Optional[google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel] = None, tuned_model_id: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Creates a tuned model. Check intermediate tuning progress (if any) through the [google.longrunning.Operations] service.
Access status and results through the Operations service. Example: GET /v1/tunedModels/az2mb0bpw6i/operations/000-111-222
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_create_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) tuned_model = generativelanguage_v1beta.TunedModel() tuned_model.tuning_task.training_data.examples.examples.text_input = "text_input_value" tuned_model.tuning_task.training_data.examples.examples.output = "output_value" request = generativelanguage_v1beta.CreateTunedModelRequest( tuned_model=tuned_model, ) # Make the request operation = client.create_tuned_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.CreateTunedModelRequest, dict]]) – The request object. Request to create a TunedModel.
tuned_model (
google.ai.generativelanguage_v1beta.types.TunedModel
) – Required. The tuned model to create. This corresponds to thetuned_model
field on therequest
instance; ifrequest
is provided, this should not be set.tuned_model_id (
str
) –Optional. The unique id for the tuned model if specified. This value should be up to 40 characters, the first character must be a letter, the last could be a letter or a number. The id must match the regular expression:
[a-z]([a-z0-9-]{0,38}[a-z0-9])?
.This corresponds to the
tuned_model_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.ai.generativelanguage_v1beta.types.TunedModel
A fine-tuned model created using ModelService.CreateTunedModel.- Return type
- async delete_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.DeleteTunedModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a tuned model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_delete_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteTunedModelRequest( name="name_value", ) # Make the request await client.delete_tuned_model(request=request)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.DeleteTunedModelRequest, dict]]) – The request object. Request to delete a TunedModel.
name (
str
) –Required. The resource name of the model. Format:
tunedModels/my-model-id
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- async get_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.model.Model [source]¶
Gets information about a specific
Model
such as its version number, token limits, parameters and other metadata. Refer to the Gemini models guide for detailed model information.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_get_model(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetModelRequest( name="name_value", ) # Make the request response = await client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GetModelRequest, dict]]) – The request object. Request for getting information about a specific Model.
name (
str
) –Required. The resource name of the model.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Information about a Generative Language Model.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- classmethod get_transport_class(label: Optional[str] = None) Type[google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport] ¶
Returns an appropriate transport class.
- Parameters
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns
The transport class to use.
- async get_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.GetTunedModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel [source]¶
Gets information about a specific TunedModel.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_get_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetTunedModelRequest( name="name_value", ) # Make the request response = await client.get_tuned_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GetTunedModelRequest, dict]]) – The request object. Request for getting information about a specific Model.
name (
str
) –Required. The resource name of the model.
Format:
tunedModels/my-model-id
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A fine-tuned model created using ModelService.CreateTunedModel.
- Return type
- async list_models(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.ListModelsRequest, dict]] = None, *, page_size: Optional[int] = None, page_token: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsAsyncPager [source]¶
Lists the
`Model
s <https://ai.google.dev/gemini-api/docs/models/gemini>`__ available through the Gemini API.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_list_models(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListModelsRequest( ) # Make the request page_result = client.list_models(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.ListModelsRequest, dict]]) – The request object. Request for listing all Models.
page_size (
int
) –The maximum number of
Models
to return (per page).If unspecified, 50 models will be returned per page. This method returns at most 1000 models per page, even if you pass a larger page_size.
This corresponds to the
page_size
field on therequest
instance; ifrequest
is provided, this should not be set.page_token (
str
) –A page token, received from a previous
ListModels
call.Provide the
page_token
returned by one request as an argument to the next request to retrieve the next page.When paginating, all other parameters provided to
ListModels
must match the call that provided the page token.This corresponds to the
page_token
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from ListModel containing a paginated list of Models.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsAsyncPager
- async list_tuned_models(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsRequest, dict]] = None, *, page_size: Optional[int] = None, page_token: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsAsyncPager [source]¶
Lists created tuned models.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_list_tuned_models(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListTunedModelsRequest( ) # Make the request page_result = client.list_tuned_models(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.ListTunedModelsRequest, dict]]) – The request object. Request for listing TunedModels.
page_size (
int
) –Optional. The maximum number of
TunedModels
to return (per page). The service may return fewer tuned models.If unspecified, at most 10 tuned models will be returned. This method returns at most 1000 models per page, even if you pass a larger page_size.
This corresponds to the
page_size
field on therequest
instance; ifrequest
is provided, this should not be set.page_token (
str
) –Optional. A page token, received from a previous
ListTunedModels
call.Provide the
page_token
returned by one request as an argument to the next request to retrieve the next page.When paginating, all other parameters provided to
ListTunedModels
must match the call that provided the page token.This corresponds to the
page_token
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from ListTunedModels containing a paginated list of Models.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsAsyncPager
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] ¶
Parses a model path into its component segments.
- static parse_tuned_model_path(path: str) Dict[str, str] ¶
Parses a tuned_model path into its component segments.
- property transport: google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport¶
Returns the transport used by the client instance.
- Returns
The transport used by the client instance.
- Return type
ModelServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
- The universe domain used
by the client instance.
- Return type
- async update_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.UpdateTunedModelRequest, dict]] = None, *, tuned_model: Optional[google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel [source]¶
Updates a tuned model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_update_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceAsyncClient() # Initialize request argument(s) tuned_model = generativelanguage_v1beta.TunedModel() tuned_model.tuning_task.training_data.examples.examples.text_input = "text_input_value" tuned_model.tuning_task.training_data.examples.examples.output = "output_value" request = generativelanguage_v1beta.UpdateTunedModelRequest( tuned_model=tuned_model, ) # Make the request response = await client.update_tuned_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.UpdateTunedModelRequest, dict]]) – The request object. Request to update a TunedModel.
tuned_model (
google.ai.generativelanguage_v1beta.types.TunedModel
) – Required. The tuned model to update. This corresponds to thetuned_model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The list of fields to update.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A fine-tuned model created using ModelService.CreateTunedModel.
- Return type
- class google.ai.generativelanguage_v1beta.services.model_service.ModelServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Provides methods for getting metadata information about Generative Models.
Instantiates the model service client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,ModelServiceTransport,Callable[..., ModelServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the ModelServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- create_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.CreateTunedModelRequest, dict]] = None, *, tuned_model: Optional[google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel] = None, tuned_model_id: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Creates a tuned model. Check intermediate tuning progress (if any) through the [google.longrunning.Operations] service.
Access status and results through the Operations service. Example: GET /v1/tunedModels/az2mb0bpw6i/operations/000-111-222
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_create_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) tuned_model = generativelanguage_v1beta.TunedModel() tuned_model.tuning_task.training_data.examples.examples.text_input = "text_input_value" tuned_model.tuning_task.training_data.examples.examples.output = "output_value" request = generativelanguage_v1beta.CreateTunedModelRequest( tuned_model=tuned_model, ) # Make the request operation = client.create_tuned_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.CreateTunedModelRequest, dict]) – The request object. Request to create a TunedModel.
tuned_model (google.ai.generativelanguage_v1beta.types.TunedModel) – Required. The tuned model to create. This corresponds to the
tuned_model
field on therequest
instance; ifrequest
is provided, this should not be set.tuned_model_id (str) –
Optional. The unique id for the tuned model if specified. This value should be up to 40 characters, the first character must be a letter, the last could be a letter or a number. The id must match the regular expression:
[a-z]([a-z0-9-]{0,38}[a-z0-9])?
.This corresponds to the
tuned_model_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.ai.generativelanguage_v1beta.types.TunedModel
A fine-tuned model created using ModelService.CreateTunedModel.- Return type
- delete_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.DeleteTunedModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a tuned model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_delete_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteTunedModelRequest( name="name_value", ) # Make the request client.delete_tuned_model(request=request)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.DeleteTunedModelRequest, dict]) – The request object. Request to delete a TunedModel.
name (str) –
Required. The resource name of the model. Format:
tunedModels/my-model-id
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- get_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.model.Model [source]¶
Gets information about a specific
Model
such as its version number, token limits, parameters and other metadata. Refer to the Gemini models guide for detailed model information.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_get_model(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetModelRequest( name="name_value", ) # Make the request response = client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GetModelRequest, dict]) – The request object. Request for getting information about a specific Model.
name (str) –
Required. The resource name of the model.
This name should match a model name returned by the
ListModels
method.Format:
models/{model}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Information about a Generative Language Model.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- get_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.GetTunedModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel [source]¶
Gets information about a specific TunedModel.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_get_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetTunedModelRequest( name="name_value", ) # Make the request response = client.get_tuned_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GetTunedModelRequest, dict]) – The request object. Request for getting information about a specific Model.
name (str) –
Required. The resource name of the model.
Format:
tunedModels/my-model-id
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A fine-tuned model created using ModelService.CreateTunedModel.
- Return type
- list_models(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.ListModelsRequest, dict]] = None, *, page_size: Optional[int] = None, page_token: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsPager [source]¶
Lists the
`Model
s <https://ai.google.dev/gemini-api/docs/models/gemini>`__ available through the Gemini API.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_list_models(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListModelsRequest( ) # Make the request page_result = client.list_models(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.ListModelsRequest, dict]) – The request object. Request for listing all Models.
page_size (int) –
The maximum number of
Models
to return (per page).If unspecified, 50 models will be returned per page. This method returns at most 1000 models per page, even if you pass a larger page_size.
This corresponds to the
page_size
field on therequest
instance; ifrequest
is provided, this should not be set.page_token (str) –
A page token, received from a previous
ListModels
call.Provide the
page_token
returned by one request as an argument to the next request to retrieve the next page.When paginating, all other parameters provided to
ListModels
must match the call that provided the page token.This corresponds to the
page_token
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from ListModel containing a paginated list of Models.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsPager
- list_tuned_models(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsRequest, dict]] = None, *, page_size: Optional[int] = None, page_token: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsPager [source]¶
Lists created tuned models.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_list_tuned_models(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListTunedModelsRequest( ) # Make the request page_result = client.list_tuned_models(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.ListTunedModelsRequest, dict]) – The request object. Request for listing TunedModels.
page_size (int) –
Optional. The maximum number of
TunedModels
to return (per page). The service may return fewer tuned models.If unspecified, at most 10 tuned models will be returned. This method returns at most 1000 models per page, even if you pass a larger page_size.
This corresponds to the
page_size
field on therequest
instance; ifrequest
is provided, this should not be set.page_token (str) –
Optional. A page token, received from a previous
ListTunedModels
call.Provide the
page_token
returned by one request as an argument to the next request to retrieve the next page.When paginating, all other parameters provided to
ListTunedModels
must match the call that provided the page token.This corresponds to the
page_token
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from ListTunedModels containing a paginated list of Models.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsPager
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] [source]¶
Parses a model path into its component segments.
- static parse_tuned_model_path(path: str) Dict[str, str] [source]¶
Parses a tuned_model path into its component segments.
- property transport: google.ai.generativelanguage_v1beta.services.model_service.transports.base.ModelServiceTransport¶
Returns the transport used by the client instance.
- Returns
- The transport used by the client
instance.
- Return type
ModelServiceTransport
- static tuned_model_path(tuned_model: str) str [source]¶
Returns a fully-qualified tuned_model string.
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
The universe domain used by the client instance.
- Return type
- update_tuned_model(request: Optional[Union[google.ai.generativelanguage_v1beta.types.model_service.UpdateTunedModelRequest, dict]] = None, *, tuned_model: Optional[google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.tuned_model.TunedModel [source]¶
Updates a tuned model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_update_tuned_model(): # Create a client client = generativelanguage_v1beta.ModelServiceClient() # Initialize request argument(s) tuned_model = generativelanguage_v1beta.TunedModel() tuned_model.tuning_task.training_data.examples.examples.text_input = "text_input_value" tuned_model.tuning_task.training_data.examples.examples.output = "output_value" request = generativelanguage_v1beta.UpdateTunedModelRequest( tuned_model=tuned_model, ) # Make the request response = client.update_tuned_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.UpdateTunedModelRequest, dict]) – The request object. Request to update a TunedModel.
tuned_model (google.ai.generativelanguage_v1beta.types.TunedModel) – Required. The tuned model to update. This corresponds to the
tuned_model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The list of fields to update.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
A fine-tuned model created using ModelService.CreateTunedModel.
- Return type
- class google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsAsyncPager(method: Callable[[...], Awaitable[google.ai.generativelanguage_v1beta.types.model_service.ListModelsResponse]], request: google.ai.generativelanguage_v1beta.types.model_service.ListModelsRequest, response: google.ai.generativelanguage_v1beta.types.model_service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListModelsResponse
object, and provides an__aiter__
method to iterate through itsmodels
field.If there are more pages, the
__aiter__
method will make additionalListModels
requests and continue to iterate through themodels
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListModelsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.model_service.pagers.ListModelsPager(method: Callable[[...], google.ai.generativelanguage_v1beta.types.model_service.ListModelsResponse], request: google.ai.generativelanguage_v1beta.types.model_service.ListModelsRequest, response: google.ai.generativelanguage_v1beta.types.model_service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListModelsResponse
object, and provides an__iter__
method to iterate through itsmodels
field.If there are more pages, the
__iter__
method will make additionalListModels
requests and continue to iterate through themodels
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListModelsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsAsyncPager(method: Callable[[...], Awaitable[google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsResponse]], request: google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsRequest, response: google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_tuned_models
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse
object, and provides an__aiter__
method to iterate through itstuned_models
field.If there are more pages, the
__aiter__
method will make additionalListTunedModels
requests and continue to iterate through thetuned_models
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListTunedModelsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.model_service.pagers.ListTunedModelsPager(method: Callable[[...], google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsResponse], request: google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsRequest, response: google.ai.generativelanguage_v1beta.types.model_service.ListTunedModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_tuned_models
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse
object, and provides an__iter__
method to iterate through itstuned_models
field.If there are more pages, the
__iter__
method will make additionalListTunedModels
requests and continue to iterate through thetuned_models
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListTunedModelsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListTunedModelsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.