RetrieverService¶
- class google.ai.generativelanguage_v1beta.services.retriever_service.RetrieverServiceAsyncClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport]]] = 'grpc_asyncio', client_options: typing.Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
An API for semantic search over a corpus of user uploaded content.
Instantiates the retriever service async client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,RetrieverServiceTransport,Callable[..., RetrieverServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the RetrieverServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- async batch_create_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchCreateChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.BatchCreateChunksResponse [source]¶
Batch create
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_create_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.CreateChunkRequest() requests.parent = "parent_value" requests.chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.BatchCreateChunksRequest( requests=requests, ) # Make the request response = await client.batch_create_chunks(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchCreateChunksRequest, dict]]) – The request object. Request to batch create
Chunk
s.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from BatchCreateChunks containing a list of created Chunks.
- Return type
google.ai.generativelanguage_v1beta.types.BatchCreateChunksResponse
- async batch_delete_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchDeleteChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Batch delete
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_delete_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.DeleteChunkRequest() requests.name = "name_value" request = generativelanguage_v1beta.BatchDeleteChunksRequest( requests=requests, ) # Make the request await client.batch_delete_chunks(request=request)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchDeleteChunksRequest, dict]]) – The request object. Request to batch delete
Chunk
s.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- async batch_update_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchUpdateChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.BatchUpdateChunksResponse [source]¶
Batch update
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_update_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.UpdateChunkRequest() requests.chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.BatchUpdateChunksRequest( requests=requests, ) # Make the request response = await client.batch_update_chunks(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchUpdateChunksRequest, dict]]) – The request object. Request to batch update
Chunk
s.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from BatchUpdateChunks containing a list of updated Chunks.
- Return type
google.ai.generativelanguage_v1beta.types.BatchUpdateChunksResponse
- static chunk_path(corpus: str, document: str, chunk: str) str ¶
Returns a fully-qualified chunk string.
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async create_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateChunkRequest, dict]] = None, *, parent: Optional[str] = None, chunk: Optional[google.ai.generativelanguage_v1beta.types.retriever.Chunk] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Creates a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_create_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) chunk = generativelanguage_v1beta.Chunk() chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.CreateChunkRequest( parent="parent_value", chunk=chunk, ) # Make the request response = await client.create_chunk(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.CreateChunkRequest, dict]]) – The request object. Request to create a
Chunk
.parent (
str
) –Required. The name of the
Document
where thisChunk
will be created. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.chunk (
google.ai.generativelanguage_v1beta.types.Chunk
) – Required. TheChunk
to create. This corresponds to thechunk
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- async create_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateCorpusRequest, dict]] = None, *, corpus: Optional[google.ai.generativelanguage_v1beta.types.retriever.Corpus] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Creates an empty
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_create_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.CreateCorpusRequest( ) # Make the request response = await client.create_corpus(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.CreateCorpusRequest, dict]]) – The request object. Request to create a
Corpus
.corpus (
google.ai.generativelanguage_v1beta.types.Corpus
) – Required. TheCorpus
to create. This corresponds to thecorpus
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- async create_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateDocumentRequest, dict]] = None, *, parent: Optional[str] = None, document: Optional[google.ai.generativelanguage_v1beta.types.retriever.Document] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Creates an empty
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_create_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.CreateDocumentRequest( parent="parent_value", ) # Make the request response = await client.create_document(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.CreateDocumentRequest, dict]]) – The request object. Request to create a
Document
.parent (
str
) –Required. The name of the
Corpus
where thisDocument
will be created. Example:corpora/my-corpus-123
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.document (
google.ai.generativelanguage_v1beta.types.Document
) – Required. TheDocument
to create. This corresponds to thedocument
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- async delete_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteChunkRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_delete_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteChunkRequest( name="name_value", ) # Make the request await client.delete_chunk(request=request)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.DeleteChunkRequest, dict]]) – The request object. Request to delete a
Chunk
.name (
str
) –Required. The resource name of the
Chunk
to delete. Example:corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- async delete_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteCorpusRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_delete_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteCorpusRequest( name="name_value", ) # Make the request await client.delete_corpus(request=request)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.DeleteCorpusRequest, dict]]) – The request object. Request to delete a
Corpus
.name (
str
) –Required. The resource name of the
Corpus
. Example:corpora/my-corpus-123
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- async delete_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteDocumentRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_delete_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteDocumentRequest( name="name_value", ) # Make the request await client.delete_document(request=request)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.DeleteDocumentRequest, dict]]) – The request object. Request to delete a
Document
.name (
str
) –Required. The resource name of the
Document
to delete. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- async get_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetChunkRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Gets information about a specific
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_get_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetChunkRequest( name="name_value", ) # Make the request response = await client.get_chunk(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GetChunkRequest, dict]]) – The request object. Request for getting information about a specific
Chunk
.name (
str
) –Required. The name of the
Chunk
to retrieve. Example:corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- async get_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetCorpusRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Gets information about a specific
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_get_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetCorpusRequest( name="name_value", ) # Make the request response = await client.get_corpus(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GetCorpusRequest, dict]]) – The request object. Request for getting information about a specific
Corpus
.name (
str
) –Required. The name of the
Corpus
. Example:corpora/my-corpus-123
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- async get_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetDocumentRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Gets information about a specific
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_get_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetDocumentRequest( name="name_value", ) # Make the request response = await client.get_document(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.GetDocumentRequest, dict]]) – The request object. Request for getting information about a specific
Document
.name (
str
) –Required. The name of the
Document
to retrieve. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- classmethod get_transport_class(label: Optional[str] = None) Type[google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport] ¶
Returns an appropriate transport class.
- Parameters
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns
The transport class to use.
- async list_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksAsyncPager [source]¶
Lists all
Chunk
s in aDocument
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_list_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListChunksRequest( parent="parent_value", ) # Make the request page_result = client.list_chunks(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.ListChunksRequest, dict]]) – The request object. Request for listing
Chunk
s.parent (
str
) –Required. The name of the
Document
containingChunk
s. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListChunks containing a paginated list of Chunks.
The Chunks are sorted by ascending chunk.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksAsyncPager
- async list_corpora(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaAsyncPager [source]¶
Lists all
Corpora
owned by the user.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_list_corpora(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListCorporaRequest( ) # Make the request page_result = client.list_corpora(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.ListCorporaRequest, dict]]) – The request object. Request for listing
Corpora
.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListCorpora containing a paginated list of Corpora.
The results are sorted by ascending corpus.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaAsyncPager
- async list_documents(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsAsyncPager [source]¶
Lists all
Document
s in aCorpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_list_documents(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListDocumentsRequest( parent="parent_value", ) # Make the request page_result = client.list_documents(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.ListDocumentsRequest, dict]]) – The request object. Request for listing
Document
s.parent (
str
) –Required. The name of the
Corpus
containingDocument
s. Example:corpora/my-corpus-123
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListDocuments containing a paginated list of Documents.
The Documents are sorted by ascending document.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsAsyncPager
- static parse_chunk_path(path: str) Dict[str, str] ¶
Parses a chunk path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_corpus_path(path: str) Dict[str, str] ¶
Parses a corpus path into its component segments.
- static parse_document_path(path: str) Dict[str, str] ¶
Parses a document path into its component segments.
- async query_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.QueryCorpusRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.QueryCorpusResponse [source]¶
Performs semantic search over a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_query_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.QueryCorpusRequest( name="name_value", query="query_value", ) # Make the request response = await client.query_corpus(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.QueryCorpusRequest, dict]]) – The request object. Request for querying a
Corpus
.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from QueryCorpus containing a list of relevant chunks.
- Return type
google.ai.generativelanguage_v1beta.types.QueryCorpusResponse
- async query_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.QueryDocumentRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.QueryDocumentResponse [source]¶
Performs semantic search over a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_query_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.QueryDocumentRequest( name="name_value", query="query_value", ) # Make the request response = await client.query_document(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.QueryDocumentRequest, dict]]) – The request object. Request for querying a
Document
.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from QueryDocument containing a list of relevant chunks.
- Return type
google.ai.generativelanguage_v1beta.types.QueryDocumentResponse
- property transport: google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport¶
Returns the transport used by the client instance.
- Returns
The transport used by the client instance.
- Return type
RetrieverServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
- The universe domain used
by the client instance.
- Return type
- async update_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateChunkRequest, dict]] = None, *, chunk: Optional[google.ai.generativelanguage_v1beta.types.retriever.Chunk] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Updates a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_update_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) chunk = generativelanguage_v1beta.Chunk() chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.UpdateChunkRequest( chunk=chunk, ) # Make the request response = await client.update_chunk(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.UpdateChunkRequest, dict]]) – The request object. Request to update a
Chunk
.chunk (
google.ai.generativelanguage_v1beta.types.Chunk
) – Required. TheChunk
to update. This corresponds to thechunk
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The list of fields to update. Currently, this only supports updating
custom_metadata
anddata
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- async update_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateCorpusRequest, dict]] = None, *, corpus: Optional[google.ai.generativelanguage_v1beta.types.retriever.Corpus] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Updates a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_update_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.UpdateCorpusRequest( ) # Make the request response = await client.update_corpus(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.UpdateCorpusRequest, dict]]) – The request object. Request to update a
Corpus
.corpus (
google.ai.generativelanguage_v1beta.types.Corpus
) – Required. TheCorpus
to update. This corresponds to thecorpus
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The list of fields to update. Currently, this only supports updating
display_name
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- async update_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateDocumentRequest, dict]] = None, *, document: Optional[google.ai.generativelanguage_v1beta.types.retriever.Document] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Updates a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_update_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.UpdateDocumentRequest( ) # Make the request response = await client.update_document(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.ai.generativelanguage_v1beta.types.UpdateDocumentRequest, dict]]) – The request object. Request to update a
Document
.document (
google.ai.generativelanguage_v1beta.types.Document
) – Required. TheDocument
to update. This corresponds to thedocument
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The list of fields to update. Currently, this only supports updating
display_name
andcustom_metadata
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- class google.ai.generativelanguage_v1beta.services.retriever_service.RetrieverServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport, typing.Callable[[...], google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
An API for semantic search over a corpus of user uploaded content.
Instantiates the retriever service client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,RetrieverServiceTransport,Callable[..., RetrieverServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the RetrieverServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- batch_create_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchCreateChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.BatchCreateChunksResponse [source]¶
Batch create
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_batch_create_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) requests = generativelanguage_v1beta.CreateChunkRequest() requests.parent = "parent_value" requests.chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.BatchCreateChunksRequest( requests=requests, ) # Make the request response = client.batch_create_chunks(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.BatchCreateChunksRequest, dict]) – The request object. Request to batch create
Chunk
s.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from BatchCreateChunks containing a list of created Chunks.
- Return type
google.ai.generativelanguage_v1beta.types.BatchCreateChunksResponse
- batch_delete_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchDeleteChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Batch delete
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_batch_delete_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) requests = generativelanguage_v1beta.DeleteChunkRequest() requests.name = "name_value" request = generativelanguage_v1beta.BatchDeleteChunksRequest( requests=requests, ) # Make the request client.batch_delete_chunks(request=request)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.BatchDeleteChunksRequest, dict]) – The request object. Request to batch delete
Chunk
s.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- batch_update_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.BatchUpdateChunksRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.BatchUpdateChunksResponse [source]¶
Batch update
Chunk
s.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_batch_update_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) requests = generativelanguage_v1beta.UpdateChunkRequest() requests.chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.BatchUpdateChunksRequest( requests=requests, ) # Make the request response = client.batch_update_chunks(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.BatchUpdateChunksRequest, dict]) – The request object. Request to batch update
Chunk
s.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from BatchUpdateChunks containing a list of updated Chunks.
- Return type
google.ai.generativelanguage_v1beta.types.BatchUpdateChunksResponse
- static chunk_path(corpus: str, document: str, chunk: str) str [source]¶
Returns a fully-qualified chunk string.
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- create_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateChunkRequest, dict]] = None, *, parent: Optional[str] = None, chunk: Optional[google.ai.generativelanguage_v1beta.types.retriever.Chunk] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Creates a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_create_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) chunk = generativelanguage_v1beta.Chunk() chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.CreateChunkRequest( parent="parent_value", chunk=chunk, ) # Make the request response = client.create_chunk(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.CreateChunkRequest, dict]) – The request object. Request to create a
Chunk
.parent (str) –
Required. The name of the
Document
where thisChunk
will be created. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.chunk (google.ai.generativelanguage_v1beta.types.Chunk) – Required. The
Chunk
to create. This corresponds to thechunk
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- create_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateCorpusRequest, dict]] = None, *, corpus: Optional[google.ai.generativelanguage_v1beta.types.retriever.Corpus] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Creates an empty
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_create_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.CreateCorpusRequest( ) # Make the request response = client.create_corpus(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.CreateCorpusRequest, dict]) – The request object. Request to create a
Corpus
.corpus (google.ai.generativelanguage_v1beta.types.Corpus) – Required. The
Corpus
to create. This corresponds to thecorpus
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- create_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.CreateDocumentRequest, dict]] = None, *, parent: Optional[str] = None, document: Optional[google.ai.generativelanguage_v1beta.types.retriever.Document] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Creates an empty
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_create_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.CreateDocumentRequest( parent="parent_value", ) # Make the request response = client.create_document(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.CreateDocumentRequest, dict]) – The request object. Request to create a
Document
.parent (str) –
Required. The name of the
Corpus
where thisDocument
will be created. Example:corpora/my-corpus-123
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.document (google.ai.generativelanguage_v1beta.types.Document) – Required. The
Document
to create. This corresponds to thedocument
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- delete_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteChunkRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_delete_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteChunkRequest( name="name_value", ) # Make the request client.delete_chunk(request=request)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.DeleteChunkRequest, dict]) – The request object. Request to delete a
Chunk
.name (str) –
Required. The resource name of the
Chunk
to delete. Example:corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- delete_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteCorpusRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_delete_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteCorpusRequest( name="name_value", ) # Make the request client.delete_corpus(request=request)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.DeleteCorpusRequest, dict]) – The request object. Request to delete a
Corpus
.name (str) –
Required. The resource name of the
Corpus
. Example:corpora/my-corpus-123
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- delete_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.DeleteDocumentRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_delete_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.DeleteDocumentRequest( name="name_value", ) # Make the request client.delete_document(request=request)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.DeleteDocumentRequest, dict]) – The request object. Request to delete a
Document
.name (str) –
Required. The resource name of the
Document
to delete. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- static document_path(corpus: str, document: str) str [source]¶
Returns a fully-qualified document string.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- get_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetChunkRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Gets information about a specific
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_get_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetChunkRequest( name="name_value", ) # Make the request response = client.get_chunk(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GetChunkRequest, dict]) – The request object. Request for getting information about a specific
Chunk
.name (str) –
Required. The name of the
Chunk
to retrieve. Example:corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- get_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetCorpusRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Gets information about a specific
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_get_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetCorpusRequest( name="name_value", ) # Make the request response = client.get_corpus(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GetCorpusRequest, dict]) – The request object. Request for getting information about a specific
Corpus
.name (str) –
Required. The name of the
Corpus
. Example:corpora/my-corpus-123
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- get_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.GetDocumentRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Gets information about a specific
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_get_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GetDocumentRequest( name="name_value", ) # Make the request response = client.get_document(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.GetDocumentRequest, dict]) – The request object. Request for getting information about a specific
Document
.name (str) –
Required. The name of the
Document
to retrieve. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- list_chunks(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksPager [source]¶
Lists all
Chunk
s in aDocument
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_list_chunks(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListChunksRequest( parent="parent_value", ) # Make the request page_result = client.list_chunks(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.ListChunksRequest, dict]) – The request object. Request for listing
Chunk
s.parent (str) –
Required. The name of the
Document
containingChunk
s. Example:corpora/my-corpus-123/documents/the-doc-abc
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListChunks containing a paginated list of Chunks.
The Chunks are sorted by ascending chunk.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksPager
- list_corpora(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaPager [source]¶
Lists all
Corpora
owned by the user.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_list_corpora(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListCorporaRequest( ) # Make the request page_result = client.list_corpora(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.ListCorporaRequest, dict]) – The request object. Request for listing
Corpora
.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListCorpora containing a paginated list of Corpora.
The results are sorted by ascending corpus.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaPager
- list_documents(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsPager [source]¶
Lists all
Document
s in aCorpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_list_documents(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.ListDocumentsRequest( parent="parent_value", ) # Make the request page_result = client.list_documents(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.ListDocumentsRequest, dict]) – The request object. Request for listing
Document
s.parent (str) –
Required. The name of the
Corpus
containingDocument
s. Example:corpora/my-corpus-123
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Response from ListDocuments containing a paginated list of Documents.
The Documents are sorted by ascending document.create_time.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsPager
- static parse_chunk_path(path: str) Dict[str, str] [source]¶
Parses a chunk path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_corpus_path(path: str) Dict[str, str] [source]¶
Parses a corpus path into its component segments.
- static parse_document_path(path: str) Dict[str, str] [source]¶
Parses a document path into its component segments.
- query_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.QueryCorpusRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.QueryCorpusResponse [source]¶
Performs semantic search over a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_query_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.QueryCorpusRequest( name="name_value", query="query_value", ) # Make the request response = client.query_corpus(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.QueryCorpusRequest, dict]) – The request object. Request for querying a
Corpus
.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from QueryCorpus containing a list of relevant chunks.
- Return type
google.ai.generativelanguage_v1beta.types.QueryCorpusResponse
- query_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.QueryDocumentRequest, dict]] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever_service.QueryDocumentResponse [source]¶
Performs semantic search over a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_query_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.QueryDocumentRequest( name="name_value", query="query_value", ) # Make the request response = client.query_document(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.QueryDocumentRequest, dict]) – The request object. Request for querying a
Document
.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response from QueryDocument containing a list of relevant chunks.
- Return type
google.ai.generativelanguage_v1beta.types.QueryDocumentResponse
- property transport: google.ai.generativelanguage_v1beta.services.retriever_service.transports.base.RetrieverServiceTransport¶
Returns the transport used by the client instance.
- Returns
- The transport used by the client
instance.
- Return type
RetrieverServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
The universe domain used by the client instance.
- Return type
- update_chunk(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateChunkRequest, dict]] = None, *, chunk: Optional[google.ai.generativelanguage_v1beta.types.retriever.Chunk] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Chunk [source]¶
Updates a
Chunk
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_update_chunk(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) chunk = generativelanguage_v1beta.Chunk() chunk.data.string_value = "string_value_value" request = generativelanguage_v1beta.UpdateChunkRequest( chunk=chunk, ) # Make the request response = client.update_chunk(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.UpdateChunkRequest, dict]) – The request object. Request to update a
Chunk
.chunk (google.ai.generativelanguage_v1beta.types.Chunk) – Required. The
Chunk
to update. This corresponds to thechunk
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The list of fields to update. Currently, this only supports updating
custom_metadata
anddata
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Chunk is a subpart of a Document that is treated as an independent unit
for the purposes of vector representation and storage. A Corpus can have a maximum of 1 million Chunks.
- Return type
- update_corpus(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateCorpusRequest, dict]] = None, *, corpus: Optional[google.ai.generativelanguage_v1beta.types.retriever.Corpus] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Corpus [source]¶
Updates a
Corpus
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_update_corpus(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.UpdateCorpusRequest( ) # Make the request response = client.update_corpus(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.UpdateCorpusRequest, dict]) – The request object. Request to update a
Corpus
.corpus (google.ai.generativelanguage_v1beta.types.Corpus) – Required. The
Corpus
to update. This corresponds to thecorpus
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The list of fields to update. Currently, this only supports updating
display_name
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Corpus is a collection of Documents.
A project can create up to 5 corpora.
- Return type
- update_document(request: Optional[Union[google.ai.generativelanguage_v1beta.types.retriever_service.UpdateDocumentRequest, dict]] = None, *, document: Optional[google.ai.generativelanguage_v1beta.types.retriever.Document] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.ai.generativelanguage_v1beta.types.retriever.Document [source]¶
Updates a
Document
.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_update_document(): # Create a client client = generativelanguage_v1beta.RetrieverServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.UpdateDocumentRequest( ) # Make the request response = client.update_document(request=request) # Handle the response print(response)
- Parameters
request (Union[google.ai.generativelanguage_v1beta.types.UpdateDocumentRequest, dict]) – The request object. Request to update a
Document
.document (google.ai.generativelanguage_v1beta.types.Document) – Required. The
Document
to update. This corresponds to thedocument
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The list of fields to update. Currently, this only supports updating
display_name
andcustom_metadata
.This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- A Document is a collection of Chunks.
A Corpus can have a maximum of 10,000 Documents.
- Return type
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksAsyncPager(method: Callable[[...], Awaitable[google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksResponse]], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_chunks
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListChunksResponse
object, and provides an__aiter__
method to iterate through itschunks
field.If there are more pages, the
__aiter__
method will make additionalListChunks
requests and continue to iterate through thechunks
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListChunksResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListChunksRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListChunksResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListChunksPager(method: Callable[[...], google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksResponse], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListChunksResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_chunks
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListChunksResponse
object, and provides an__iter__
method to iterate through itschunks
field.If there are more pages, the
__iter__
method will make additionalListChunks
requests and continue to iterate through thechunks
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListChunksResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListChunksRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListChunksResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaAsyncPager(method: Callable[[...], Awaitable[google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaResponse]], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_corpora
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListCorporaResponse
object, and provides an__aiter__
method to iterate through itscorpora
field.If there are more pages, the
__aiter__
method will make additionalListCorpora
requests and continue to iterate through thecorpora
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListCorporaResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListCorporaRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListCorporaResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListCorporaPager(method: Callable[[...], google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaResponse], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListCorporaResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_corpora
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListCorporaResponse
object, and provides an__iter__
method to iterate through itscorpora
field.If there are more pages, the
__iter__
method will make additionalListCorpora
requests and continue to iterate through thecorpora
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListCorporaResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListCorporaRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListCorporaResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsAsyncPager(method: Callable[[...], Awaitable[google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsResponse]], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_documents
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListDocumentsResponse
object, and provides an__aiter__
method to iterate through itsdocuments
field.If there are more pages, the
__aiter__
method will make additionalListDocuments
requests and continue to iterate through thedocuments
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListDocumentsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListDocumentsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListDocumentsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.ai.generativelanguage_v1beta.services.retriever_service.pagers.ListDocumentsPager(method: Callable[[...], google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsResponse], request: google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsRequest, response: google.ai.generativelanguage_v1beta.types.retriever_service.ListDocumentsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_documents
requests.This class thinly wraps an initial
google.ai.generativelanguage_v1beta.types.ListDocumentsResponse
object, and provides an__iter__
method to iterate through itsdocuments
field.If there are more pages, the
__iter__
method will make additionalListDocuments
requests and continue to iterate through thedocuments
field on the corresponding responses.All the usual
google.ai.generativelanguage_v1beta.types.ListDocumentsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.ai.generativelanguage_v1beta.types.ListDocumentsRequest) – The initial request object.
response (google.ai.generativelanguage_v1beta.types.ListDocumentsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.