As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.ai.generativelanguage_v1beta.services.generative_service.client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import os
import re
from typing import (
    Callable,
    Dict,
    Iterable,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)
import warnings

from google.api_core import client_options as client_options_lib
from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials as ga_credentials  # type: ignore
from google.auth.exceptions import MutualTLSChannelError  # type: ignore
from google.auth.transport import mtls  # type: ignore
from google.auth.transport.grpc import SslCredentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta import gapic_version as package_version

try:
    OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.Retry, object, None]  # type: ignore

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)

from google.longrunning import operations_pb2  # type: ignore

from google.ai.generativelanguage_v1beta.types import generative_service, safety
from google.ai.generativelanguage_v1beta.types import content
from google.ai.generativelanguage_v1beta.types import content as gag_content

from .transports.base import DEFAULT_CLIENT_INFO, GenerativeServiceTransport
from .transports.grpc import GenerativeServiceGrpcTransport
from .transports.grpc_asyncio import GenerativeServiceGrpcAsyncIOTransport
from .transports.rest import GenerativeServiceRestTransport


class GenerativeServiceClientMeta(type):
    """Metaclass for the GenerativeService client.

    This provides class-level methods for building and retrieving
    support objects (e.g. transport) without polluting the client instance
    objects.
    """

    _transport_registry = (
        OrderedDict()
    )  # type: Dict[str, Type[GenerativeServiceTransport]]
    _transport_registry["grpc"] = GenerativeServiceGrpcTransport
    _transport_registry["grpc_asyncio"] = GenerativeServiceGrpcAsyncIOTransport
    _transport_registry["rest"] = GenerativeServiceRestTransport

    def get_transport_class(
        cls,
        label: Optional[str] = None,
    ) -> Type[GenerativeServiceTransport]:
        """Returns an appropriate transport class.

        Args:
            label: The name of the desired transport. If none is
                provided, then the first transport in the registry is used.

        Returns:
            The transport class to use.
        """
        # If a specific transport is requested, return that one.
        if label:
            return cls._transport_registry[label]

        # No transport is requested; return the default (that is, the first one
        # in the dictionary).
        return next(iter(cls._transport_registry.values()))


[docs]class GenerativeServiceClient(metaclass=GenerativeServiceClientMeta): """API for using Large Models that generate multimodal content and have additional capabilities beyond text generation. """ @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Converts api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = "generativelanguage.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) _DEFAULT_ENDPOINT_TEMPLATE = "generativelanguage.{UNIVERSE_DOMAIN}" _DEFAULT_UNIVERSE = "googleapis.com"
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info(info) kwargs["credentials"] = credentials return cls(*args, **kwargs)
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file(filename) kwargs["credentials"] = credentials return cls(*args, **kwargs)
from_service_account_json = from_service_account_file @property def transport(self) -> GenerativeServiceTransport: """Returns the transport used by the client instance. Returns: GenerativeServiceTransport: The transport used by the client instance. """ return self._transport
[docs] @staticmethod def cached_content_path( id: str, ) -> str: """Returns a fully-qualified cached_content string.""" return "cachedContents/{id}".format( id=id, )
[docs] @staticmethod def parse_cached_content_path(path: str) -> Dict[str, str]: """Parses a cached_content path into its component segments.""" m = re.match(r"^cachedContents/(?P<id>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def model_path( model: str, ) -> str: """Returns a fully-qualified model string.""" return "models/{model}".format( model=model, )
[docs] @staticmethod def parse_model_path(path: str) -> Dict[str, str]: """Parses a model path into its component segments.""" m = re.match(r"^models/(?P<model>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def common_billing_account_path( billing_account: str, ) -> str: """Returns a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, )
[docs] @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def common_folder_path( folder: str, ) -> str: """Returns a fully-qualified folder string.""" return "folders/{folder}".format( folder=folder, )
[docs] @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def common_organization_path( organization: str, ) -> str: """Returns a fully-qualified organization string.""" return "organizations/{organization}".format( organization=organization, )
[docs] @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def common_project_path( project: str, ) -> str: """Returns a fully-qualified project string.""" return "projects/{project}".format( project=project, )
[docs] @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {}
[docs] @staticmethod def common_location_path( project: str, location: str, ) -> str: """Returns a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, )
[docs] @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path) return m.groupdict() if m else {}
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[client_options_lib.ClientOptions] = None ): """Deprecated. Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ warnings.warn( "get_mtls_endpoint_and_cert_source is deprecated. Use the api_endpoint property instead.", DeprecationWarning, ) if client_options is None: client_options = client_options_lib.ClientOptions() use_client_cert = os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_client_cert not in ("true", "false"): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) if use_mtls_endpoint not in ("auto", "never", "always"): raise MutualTLSChannelError( "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`" ) # Figure out the client cert source to use. client_cert_source = None if use_client_cert == "true": if client_options.client_cert_source: client_cert_source = client_options.client_cert_source elif mtls.has_default_client_cert_source(): client_cert_source = mtls.default_client_cert_source() # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint elif use_mtls_endpoint == "always" or ( use_mtls_endpoint == "auto" and client_cert_source ): api_endpoint = cls.DEFAULT_MTLS_ENDPOINT else: api_endpoint = cls.DEFAULT_ENDPOINT return api_endpoint, client_cert_source
@staticmethod def _read_environment_variables(): """Returns the environment variables used by the client. Returns: Tuple[bool, str, str]: returns the GOOGLE_API_USE_CLIENT_CERTIFICATE, GOOGLE_API_USE_MTLS_ENDPOINT, and GOOGLE_CLOUD_UNIVERSE_DOMAIN environment variables. Raises: ValueError: If GOOGLE_API_USE_CLIENT_CERTIFICATE is not any of ["true", "false"]. google.auth.exceptions.MutualTLSChannelError: If GOOGLE_API_USE_MTLS_ENDPOINT is not any of ["auto", "never", "always"]. """ use_client_cert = os.getenv( "GOOGLE_API_USE_CLIENT_CERTIFICATE", "false" ).lower() use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto").lower() universe_domain_env = os.getenv("GOOGLE_CLOUD_UNIVERSE_DOMAIN") if use_client_cert not in ("true", "false"): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) if use_mtls_endpoint not in ("auto", "never", "always"): raise MutualTLSChannelError( "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`" ) return use_client_cert == "true", use_mtls_endpoint, universe_domain_env @staticmethod def _get_client_cert_source(provided_cert_source, use_cert_flag): """Return the client cert source to be used by the client. Args: provided_cert_source (bytes): The client certificate source provided. use_cert_flag (bool): A flag indicating whether to use the client certificate. Returns: bytes or None: The client cert source to be used by the client. """ client_cert_source = None if use_cert_flag: if provided_cert_source: client_cert_source = provided_cert_source elif mtls.has_default_client_cert_source(): client_cert_source = mtls.default_client_cert_source() return client_cert_source @staticmethod def _get_api_endpoint( api_override, client_cert_source, universe_domain, use_mtls_endpoint ): """Return the API endpoint used by the client. Args: api_override (str): The API endpoint override. If specified, this is always the return value of this function and the other arguments are not used. client_cert_source (bytes): The client certificate source used by the client. universe_domain (str): The universe domain used by the client. use_mtls_endpoint (str): How to use the mTLS endpoint, which depends also on the other parameters. Possible values are "always", "auto", or "never". Returns: str: The API endpoint to be used by the client. """ if api_override is not None: api_endpoint = api_override elif use_mtls_endpoint == "always" or ( use_mtls_endpoint == "auto" and client_cert_source ): _default_universe = GenerativeServiceClient._DEFAULT_UNIVERSE if universe_domain != _default_universe: raise MutualTLSChannelError( f"mTLS is not supported in any universe other than {_default_universe}." ) api_endpoint = GenerativeServiceClient.DEFAULT_MTLS_ENDPOINT else: api_endpoint = GenerativeServiceClient._DEFAULT_ENDPOINT_TEMPLATE.format( UNIVERSE_DOMAIN=universe_domain ) return api_endpoint @staticmethod def _get_universe_domain( client_universe_domain: Optional[str], universe_domain_env: Optional[str] ) -> str: """Return the universe domain used by the client. Args: client_universe_domain (Optional[str]): The universe domain configured via the client options. universe_domain_env (Optional[str]): The universe domain configured via the "GOOGLE_CLOUD_UNIVERSE_DOMAIN" environment variable. Returns: str: The universe domain to be used by the client. Raises: ValueError: If the universe domain is an empty string. """ universe_domain = GenerativeServiceClient._DEFAULT_UNIVERSE if client_universe_domain is not None: universe_domain = client_universe_domain elif universe_domain_env is not None: universe_domain = universe_domain_env if len(universe_domain.strip()) == 0: raise ValueError("Universe Domain cannot be an empty string.") return universe_domain def _validate_universe_domain(self): """Validates client's and credentials' universe domains are consistent. Returns: bool: True iff the configured universe domain is valid. Raises: ValueError: If the configured universe domain is not valid. """ # NOTE (b/349488459): universe validation is disabled until further notice. return True @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._universe_domain def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[ str, GenerativeServiceTransport, Callable[..., GenerativeServiceTransport], ] ] = None, client_options: Optional[Union[client_options_lib.ClientOptions, dict]] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the generative service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,GenerativeServiceTransport,Callable[..., GenerativeServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the GenerativeServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that the ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._client_options = client_options if isinstance(self._client_options, dict): self._client_options = client_options_lib.from_dict(self._client_options) if self._client_options is None: self._client_options = client_options_lib.ClientOptions() self._client_options = cast( client_options_lib.ClientOptions, self._client_options ) universe_domain_opt = getattr(self._client_options, "universe_domain", None) ( self._use_client_cert, self._use_mtls_endpoint, self._universe_domain_env, ) = GenerativeServiceClient._read_environment_variables() self._client_cert_source = GenerativeServiceClient._get_client_cert_source( self._client_options.client_cert_source, self._use_client_cert ) self._universe_domain = GenerativeServiceClient._get_universe_domain( universe_domain_opt, self._universe_domain_env ) self._api_endpoint = None # updated below, depending on `transport` # Initialize the universe domain validation. self._is_universe_domain_valid = False if CLIENT_LOGGING_SUPPORTED: # pragma: NO COVER # Setup logging. client_logging.initialize_logging() api_key_value = getattr(self._client_options, "api_key", None) if api_key_value and credentials: raise ValueError( "client_options.api_key and credentials are mutually exclusive" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. transport_provided = isinstance(transport, GenerativeServiceTransport) if transport_provided: # transport is a GenerativeServiceTransport instance. if credentials or self._client_options.credentials_file or api_key_value: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) if self._client_options.scopes: raise ValueError( "When providing a transport instance, provide its scopes " "directly." ) self._transport = cast(GenerativeServiceTransport, transport) self._api_endpoint = self._transport.host self._api_endpoint = ( self._api_endpoint or GenerativeServiceClient._get_api_endpoint( self._client_options.api_endpoint, self._client_cert_source, self._universe_domain, self._use_mtls_endpoint, ) ) if not transport_provided: import google.auth._default # type: ignore if api_key_value and hasattr( google.auth._default, "get_api_key_credentials" ): credentials = google.auth._default.get_api_key_credentials( api_key_value ) transport_init: Union[ Type[GenerativeServiceTransport], Callable[..., GenerativeServiceTransport], ] = ( GenerativeServiceClient.get_transport_class(transport) if isinstance(transport, str) or transport is None else cast(Callable[..., GenerativeServiceTransport], transport) ) # initialize with the provided callable or the passed in class self._transport = transport_init( credentials=credentials, credentials_file=self._client_options.credentials_file, host=self._api_endpoint, scopes=self._client_options.scopes, client_cert_source_for_mtls=self._client_cert_source, quota_project_id=self._client_options.quota_project_id, client_info=client_info, always_use_jwt_access=True, api_audience=self._client_options.api_audience, ) if "async" not in str(self._transport): if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor( std_logging.DEBUG ): # pragma: NO COVER _LOGGER.debug( "Created client `google.ai.generativelanguage_v1beta.GenerativeServiceClient`.", extra={ "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "universeDomain": getattr( self._transport._credentials, "universe_domain", "" ), "credentialsType": f"{type(self._transport._credentials).__module__}.{type(self._transport._credentials).__qualname__}", "credentialsInfo": getattr( self.transport._credentials, "get_cred_info", lambda: None )(), } if hasattr(self._transport, "_credentials") else { "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "credentialsType": None, }, )
[docs] def generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateContentResponse: r"""Generates a model response given an input ``GenerateContentRequest``. Refer to the `text generation guide <https://ai.google.dev/gemini-api/docs/text-generation>`__ for detailed usage information. Input capabilities differ between models, including tuned models. Refer to the `model guide <https://ai.google.dev/gemini-api/docs/models/gemini>`__ and `tuning guide <https://ai.google.dev/gemini-api/docs/model-tuning>`__ for details. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request response = client.generate_content(request=request) # Handle the response print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]): The request object. Request to generate a completion from the model. model (str): Required. The name of the ``Model`` to use for generating the completion. Format: ``name=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateContentResponse: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents is not None: request.contents = contents # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.generate_content] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def generate_answer( self, request: Optional[Union[generative_service.GenerateAnswerRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, safety_settings: Optional[MutableSequence[safety.SafetySetting]] = None, answer_style: Optional[ generative_service.GenerateAnswerRequest.AnswerStyle ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateAnswerResponse: r"""Generates a grounded answer from the model given an input ``GenerateAnswerRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_generate_answer(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateAnswerRequest( model="model_value", answer_style="VERBOSE", ) # Make the request response = client.generate_answer(request=request) # Handle the response print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest, dict]): The request object. Request to generate a grounded answer from the ``Model``. model (str): Required. The name of the ``Model`` to use for generating the grounded response. Format: ``model=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]): Required. The content of the current conversation with the ``Model``. For single-turn queries, this is a single question to answer. For multi-turn queries, this is a repeated field that contains conversation history and the last ``Content`` in the list containing the question. Note: ``GenerateAnswer`` only supports queries in English. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. safety_settings (MutableSequence[google.ai.generativelanguage_v1beta.types.SafetySetting]): Optional. A list of unique ``SafetySetting`` instances for blocking unsafe content. This will be enforced on the ``GenerateAnswerRequest.contents`` and ``GenerateAnswerResponse.candidate``. There should not be more than one setting for each ``SafetyCategory`` type. The API will block any contents and responses that fail to meet the thresholds set by these settings. This list overrides the default settings for each ``SafetyCategory`` specified in the safety_settings. If there is no ``SafetySetting`` for a given ``SafetyCategory`` provided in the list, the API will use the default safety setting for that category. Harm categories HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT are supported. Refer to the `guide <https://ai.google.dev/gemini-api/docs/safety-settings>`__ for detailed information on available safety settings. Also refer to the `Safety guidance <https://ai.google.dev/gemini-api/docs/safety-guidance>`__ to learn how to incorporate safety considerations in your AI applications. This corresponds to the ``safety_settings`` field on the ``request`` instance; if ``request`` is provided, this should not be set. answer_style (google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest.AnswerStyle): Required. Style in which answers should be returned. This corresponds to the ``answer_style`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateAnswerResponse: Response from the model for a grounded answer. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents, safety_settings, answer_style]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateAnswerRequest): request = generative_service.GenerateAnswerRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents is not None: request.contents = contents if safety_settings is not None: request.safety_settings = safety_settings if answer_style is not None: request.answer_style = answer_style # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.generate_answer] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def stream_generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> Iterable[generative_service.GenerateContentResponse]: r"""Generates a `streamed response <https://ai.google.dev/gemini-api/docs/text-generation?lang=python#generate-a-text-stream>`__ from the model given an input ``GenerateContentRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_stream_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request stream = client.stream_generate_content(request=request) # Handle the response for response in stream: print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]): The request object. Request to generate a completion from the model. model (str): Required. The name of the ``Model`` to use for generating the completion. Format: ``name=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: Iterable[google.ai.generativelanguage_v1beta.types.GenerateContentResponse]: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents is not None: request.contents = contents # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.stream_generate_content] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def embed_content( self, request: Optional[Union[generative_service.EmbedContentRequest, dict]] = None, *, model: Optional[str] = None, content: Optional[gag_content.Content] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.EmbedContentResponse: r"""Generates a text embedding vector from the input ``Content`` using the specified `Gemini Embedding model <https://ai.google.dev/gemini-api/docs/models/gemini#text-embedding>`__. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_embed_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedContentRequest( model="model_value", ) # Make the request response = client.embed_content(request=request) # Handle the response print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.EmbedContentRequest, dict]): The request object. Request containing the ``Content`` for the model to embed. model (str): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. content (google.ai.generativelanguage_v1beta.types.Content): Required. The content to embed. Only the ``parts.text`` fields will be counted. This corresponds to the ``content`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.EmbedContentResponse: The response to an EmbedContentRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, content]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.EmbedContentRequest): request = generative_service.EmbedContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if content is not None: request.content = content # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.embed_content] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def batch_embed_contents( self, request: Optional[ Union[generative_service.BatchEmbedContentsRequest, dict] ] = None, *, model: Optional[str] = None, requests: Optional[ MutableSequence[generative_service.EmbedContentRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.BatchEmbedContentsResponse: r"""Generates multiple embedding vectors from the input ``Content`` which consists of a batch of strings represented as ``EmbedContentRequest`` objects. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_batch_embed_contents(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) requests = generativelanguage_v1beta.EmbedContentRequest() requests.model = "model_value" request = generativelanguage_v1beta.BatchEmbedContentsRequest( model="model_value", requests=requests, ) # Make the request response = client.batch_embed_contents(request=request) # Handle the response print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.BatchEmbedContentsRequest, dict]): The request object. Batch request to get embeddings from the model for a list of prompts. model (str): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. requests (MutableSequence[google.ai.generativelanguage_v1beta.types.EmbedContentRequest]): Required. Embed requests for the batch. The model in each of these requests must match the model specified ``BatchEmbedContentsRequest.model``. This corresponds to the ``requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.BatchEmbedContentsResponse: The response to a BatchEmbedContentsRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, requests]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.BatchEmbedContentsRequest): request = generative_service.BatchEmbedContentsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if requests is not None: request.requests = requests # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.batch_embed_contents] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def count_tokens( self, request: Optional[Union[generative_service.CountTokensRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.CountTokensResponse: r"""Runs a model's tokenizer on input ``Content`` and returns the token count. Refer to the `tokens guide <https://ai.google.dev/gemini-api/docs/tokens>`__ to learn more about tokens. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta def sample_count_tokens(): # Create a client client = generativelanguage_v1beta.GenerativeServiceClient() # Initialize request argument(s) request = generativelanguage_v1beta.CountTokensRequest( model="model_value", ) # Make the request response = client.count_tokens(request=request) # Handle the response print(response) Args: request (Union[google.ai.generativelanguage_v1beta.types.CountTokensRequest, dict]): The request object. Counts the number of tokens in the ``prompt`` sent to a model. Models may tokenize text differently, so each model may return a different ``token_count``. model (str): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (MutableSequence[google.ai.generativelanguage_v1beta.types.Content]): Optional. The input given to the model as a prompt. This field is ignored when ``generate_content_request`` is set. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.CountTokensResponse: A response from CountTokens. It returns the model's token_count for the prompt. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, contents]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.CountTokensRequest): request = generative_service.CountTokensRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents is not None: request.contents = contents # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.count_tokens] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
def __enter__(self) -> "GenerativeServiceClient": return self
[docs] def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close()
[docs] def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("GenerativeServiceClient",)