ModelService¶
- class google.cloud.retail_v2alpha.services.model_service.ModelServiceAsyncClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport, typing.Callable[[...], google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport]]] = 'grpc_asyncio', client_options: typing.Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Service for performing CRUD operations on models. Recommendation models contain all the metadata necessary to generate a set of models for the
Predict()
API. A model is queried indirectly via a ServingConfig, which associates a model with a given Placement (e.g. Frequently Bought Together on Home Page).This service allows you to do the following:
Initiate training of a model.
Pause training of an existing model.
List all the available models along with their metadata.
Control their tuning schedule.
Instantiates the model service async client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,ModelServiceTransport,Callable[..., ModelServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the ModelServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static catalog_path(project: str, location: str, catalog: str) str ¶
Returns a fully-qualified catalog string.
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async create_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Creates a new model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_create_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) model = retail_v2alpha.Model() model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value" model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value" model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value" model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2alpha.CreateModelRequest( parent="parent_value", model=model, ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.CreateModelRequest, dict]]) – The request object. Request for creating a model.
parent (
str
) –Required. The parent resource under which to create the model. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.model (
google.cloud.retail_v2alpha.types.Model
) –Required. The payload of the [Model][google.cloud.retail.v2alpha.Model] to create.
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.retail_v2alpha.types.Model
Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- The result type for the operation will be
- Return type
- async delete_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_delete_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.DeleteModelRequest( name="name_value", ) # Make the request await client.delete_model(request=request)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.DeleteModelRequest, dict]]) – The request object. Request for deleting a model.
name (
str
) –Required. The resource name of the [Model][google.cloud.retail.v2alpha.Model] to delete. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- async get_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Gets a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_get_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.GetModelRequest( name="name_value", ) # Make the request response = await client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.GetModelRequest, dict]]) – The request object. Request for getting a model.
name (
str
) –Required. The resource name of the [Model][google.cloud.retail.v2alpha.Model] to get. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- async get_operation(request: Optional[google.longrunning.operations_pb2.GetOperationRequest] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.longrunning.operations_pb2.Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An
Operation
object.- Return type
Operation
- classmethod get_transport_class(label: Optional[str] = None) Type[google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport] ¶
Returns an appropriate transport class.
- Parameters
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns
The transport class to use.
- async list_models(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsAsyncPager [source]¶
Lists all the models linked to this event store.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_list_models(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response async for response in page_result: print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.ListModelsRequest, dict]]) – The request object. Request for listing models associated with a resource.
parent (
str
) –Required. The parent for which to list models. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response to a ListModelRequest.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsAsyncPager
- async list_operations(request: Optional[google.longrunning.operations_pb2.ListOperationsRequest] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.longrunning.operations_pb2.ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for
ListOperations
method.- Return type
ListOperationsResponse
- static model_path(project: str, location: str, catalog: str, model: str) str ¶
Returns a fully-qualified model string.
- static parse_catalog_path(path: str) Dict[str, str] ¶
Parses a catalog path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] ¶
Parses a model path into its component segments.
- async pause_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.PauseModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Pauses the training of an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_pause_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.PauseModelRequest( name="name_value", ) # Make the request response = await client.pause_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.PauseModelRequest, dict]]) – The request object. Request for pausing training of a model.
name (
str
) –Required. The name of the model to pause. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- async resume_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ResumeModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Resumes the training of an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_resume_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.ResumeModelRequest( name="name_value", ) # Make the request response = await client.resume_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.ResumeModelRequest, dict]]) – The request object. Request for resuming training of a model.
name (
str
) –Required. The name of the model to resume. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- property transport: google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport¶
Returns the transport used by the client instance.
- Returns
The transport used by the client instance.
- Return type
ModelServiceTransport
- async tune_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.TuneModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation_async.AsyncOperation [source]¶
Tunes an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_tune_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2alpha.TuneModelRequest( name="name_value", ) # Make the request operation = client.tune_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.TuneModelRequest, dict]]) – The request object. Request to manually start a tuning process now (instead of waiting for the periodically scheduled tuning to happen).
name (
str
) –Required. The resource name of the model to tune. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.cloud.retail_v2alpha.types.TuneModelResponse
Response associated with a tune operation.- Return type
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
- The universe domain used
by the client instance.
- Return type
- async update_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.UpdateModelRequest, dict]] = None, *, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Update of model metadata. Only fields that currently can be updated are:
filtering_option
andperiodic_tuning_state
. If other values are provided, this API method ignores them.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha async def sample_update_model(): # Create a client client = retail_v2alpha.ModelServiceAsyncClient() # Initialize request argument(s) model = retail_v2alpha.Model() model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value" model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value" model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value" model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2alpha.UpdateModelRequest( model=model, ) # Make the request response = await client.update_model(request=request) # Handle the response print(response)
- Parameters
request (Optional[Union[google.cloud.retail_v2alpha.types.UpdateModelRequest, dict]]) – The request object. Request for updating an existing model.
model (
google.cloud.retail_v2alpha.types.Model
) –Required. The body of the updated [Model][google.cloud.retail.v2alpha.Model].
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Optional. Indicates which fields in the provided ‘model’ to update. If not set, by default updates all fields.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- class google.cloud.retail_v2alpha.services.model_service.ModelServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport, typing.Callable[[...], google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Service for performing CRUD operations on models. Recommendation models contain all the metadata necessary to generate a set of models for the
Predict()
API. A model is queried indirectly via a ServingConfig, which associates a model with a given Placement (e.g. Frequently Bought Together on Home Page).This service allows you to do the following:
Initiate training of a model.
Pause training of an existing model.
List all the available models along with their metadata.
Control their tuning schedule.
Instantiates the model service client.
- Parameters
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,ModelServiceTransport,Callable[..., ModelServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the ModelServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns
The API endpoint used by the client instance.
- Return type
- static catalog_path(project: str, location: str, catalog: str) str [source]¶
Returns a fully-qualified catalog string.
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- create_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Creates a new model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_create_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) model = retail_v2alpha.Model() model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value" model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value" model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value" model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2alpha.CreateModelRequest( parent="parent_value", model=model, ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.CreateModelRequest, dict]) – The request object. Request for creating a model.
parent (str) –
Required. The parent resource under which to create the model. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.model (google.cloud.retail_v2alpha.types.Model) –
Required. The payload of the [Model][google.cloud.retail.v2alpha.Model] to create.
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.retail_v2alpha.types.Model
Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- The result type for the operation will be
- Return type
- delete_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_delete_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.DeleteModelRequest( name="name_value", ) # Make the request client.delete_model(request=request)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.DeleteModelRequest, dict]) – The request object. Request for deleting a model.
name (str) –
Required. The resource name of the [Model][google.cloud.retail.v2alpha.Model] to delete. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns
The constructed client.
- Return type
- get_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Gets a model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_get_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.GetModelRequest( name="name_value", ) # Make the request response = client.get_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.GetModelRequest, dict]) – The request object. Request for getting a model.
name (str) –
Required. The resource name of the [Model][google.cloud.retail.v2alpha.Model] to get. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[google.api_core.client_options.ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns
- returns the API endpoint and the
client cert source to use.
- Return type
- Raises
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- get_operation(request: Optional[google.longrunning.operations_pb2.GetOperationRequest] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.longrunning.operations_pb2.Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An
Operation
object.- Return type
Operation
- list_models(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsPager [source]¶
Lists all the models linked to this event store.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_list_models(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response for response in page_result: print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.ListModelsRequest, dict]) – The request object. Request for listing models associated with a resource.
parent (str) –
Required. The parent for which to list models. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response to a ListModelRequest.
Iterating over this object will yield results and resolve additional pages automatically.
- Return type
google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsPager
- list_operations(request: Optional[google.longrunning.operations_pb2.ListOperationsRequest] = None, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.longrunning.operations_pb2.ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
Response message for
ListOperations
method.- Return type
ListOperationsResponse
- static model_path(project: str, location: str, catalog: str, model: str) str [source]¶
Returns a fully-qualified model string.
- static parse_catalog_path(path: str) Dict[str, str] [source]¶
Parses a catalog path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_model_path(path: str) Dict[str, str] [source]¶
Parses a model path into its component segments.
- pause_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.PauseModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Pauses the training of an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_pause_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.PauseModelRequest( name="name_value", ) # Make the request response = client.pause_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.PauseModelRequest, dict]) – The request object. Request for pausing training of a model.
name (str) –
Required. The name of the model to pause. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- resume_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ResumeModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Resumes the training of an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_resume_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.ResumeModelRequest( name="name_value", ) # Make the request response = client.resume_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.ResumeModelRequest, dict]) – The request object. Request for resuming training of a model.
name (str) –
Required. The name of the model to resume. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- property transport: google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport¶
Returns the transport used by the client instance.
- Returns
- The transport used by the client
instance.
- Return type
ModelServiceTransport
- tune_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.TuneModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.api_core.operation.Operation [source]¶
Tunes an existing model.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_tune_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) request = retail_v2alpha.TuneModelRequest( name="name_value", ) # Make the request operation = client.tune_model(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.TuneModelRequest, dict]) – The request object. Request to manually start a tuning process now (instead of waiting for the periodically scheduled tuning to happen).
name (str) –
Required. The resource name of the model to tune. Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
An object representing a long-running operation.
The result type for the operation will be
google.cloud.retail_v2alpha.types.TuneModelResponse
Response associated with a tune operation.- Return type
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns
The universe domain used by the client instance.
- Return type
- update_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.UpdateModelRequest, dict]] = None, *, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) google.cloud.retail_v2alpha.types.model.Model [source]¶
Update of model metadata. Only fields that currently can be updated are:
filtering_option
andperiodic_tuning_state
. If other values are provided, this API method ignores them.# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2alpha def sample_update_model(): # Create a client client = retail_v2alpha.ModelServiceClient() # Initialize request argument(s) model = retail_v2alpha.Model() model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value" model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value" model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value" model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2alpha.UpdateModelRequest( model=model, ) # Make the request response = client.update_model(request=request) # Handle the response print(response)
- Parameters
request (Union[google.cloud.retail_v2alpha.types.UpdateModelRequest, dict]) – The request object. Request for updating an existing model.
model (google.cloud.retail_v2alpha.types.Model) –
Required. The body of the updated [Model][google.cloud.retail.v2alpha.Model].
This corresponds to the
model
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Optional. Indicates which fields in the provided ‘model’ to update. If not set, by default updates all fields.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns
- Metadata that describes the training and serving parameters of a
[Model][google.cloud.retail.v2alpha.Model]. A [Model][google.cloud.retail.v2alpha.Model] can be associated with a [ServingConfig][google.cloud.retail.v2alpha.ServingConfig] and then queried through the Predict API.
- Return type
- class google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsAsyncPager(method: Callable[[...], Awaitable[google.cloud.retail_v2alpha.types.model_service.ListModelsResponse]], request: google.cloud.retail_v2alpha.types.model_service.ListModelsRequest, response: google.cloud.retail_v2alpha.types.model_service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary_async.AsyncRetry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.cloud.retail_v2alpha.types.ListModelsResponse
object, and provides an__aiter__
method to iterate through itsmodels
field.If there are more pages, the
__aiter__
method will make additionalListModels
requests and continue to iterate through themodels
field on the corresponding responses.All the usual
google.cloud.retail_v2alpha.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.retail_v2alpha.types.ListModelsRequest) – The initial request object.
response (google.cloud.retail_v2alpha.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsPager(method: Callable[[...], google.cloud.retail_v2alpha.types.model_service.ListModelsResponse], request: google.cloud.retail_v2alpha.types.model_service.ListModelsRequest, response: google.cloud.retail_v2alpha.types.model_service.ListModelsResponse, *, retry: Optional[Union[google.api_core.retry.retry_unary.Retry, google.api_core.gapic_v1.method._MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_models
requests.This class thinly wraps an initial
google.cloud.retail_v2alpha.types.ListModelsResponse
object, and provides an__iter__
method to iterate through itsmodels
field.If there are more pages, the
__iter__
method will make additionalListModels
requests and continue to iterate through themodels
field on the corresponding responses.All the usual
google.cloud.retail_v2alpha.types.ListModelsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.retail_v2alpha.types.ListModelsRequest) – The initial request object.
response (google.cloud.retail_v2alpha.types.ListModelsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.