Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb

Overview

Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command- line arguments and/or in a YAML configuration file referenced from the -- config command-line argument. For details, see the guide to submitting a training job.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput

Returns a new instance of GoogleCloudMlV1TrainingInput.



2814
2815
2816
# File 'generated/google/apis/ml_v1/classes.rb', line 2814

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#argsArray<String>

Optional. Command-line arguments passed to the training application when it starts. If your job uses a custom container, then the arguments are passed to the container's ENTRYPOINT command. Corresponds to the JSON property args

Returns:

  • (Array<String>)


2608
2609
2610
# File 'generated/google/apis/ml_v1/classes.rb', line 2608

def args
  @args
end

#encryption_configGoogle::Apis::MlV1::GoogleCloudMlV1EncryptionConfig

Represents a custom encryption key configuration that can be applied to a resource. Corresponds to the JSON property encryptionConfig



2614
2615
2616
# File 'generated/google/apis/ml_v1/classes.rb', line 2614

def encryption_config
  @encryption_config
end

#evaluator_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property evaluatorConfig



2619
2620
2621
# File 'generated/google/apis/ml_v1/classes.rb', line 2619

def evaluator_config
  @evaluator_config
end

#evaluator_countFixnum

Optional. The number of evaluator replicas to use for the training job. Each replica in the cluster will be of the type specified in evaluator_type. This value can only be used when scale_tier is set to CUSTOM. If you set this value, you must also set evaluator_type. The default value is zero. Corresponds to the JSON property evaluatorCount

Returns:

  • (Fixnum)


2627
2628
2629
# File 'generated/google/apis/ml_v1/classes.rb', line 2627

def evaluator_count
  @evaluator_count
end

#evaluator_typeString

Optional. Specifies the type of virtual machine to use for your training job's evaluator nodes. The supported values are the same as those described in the entry for masterType. This value must be consistent with the category of machine type that masterType uses. In other words, both must be Compute Engine machine types or both must be legacy machine types. This value must be present when scaleTier is set to CUSTOM and evaluatorCount is greater than zero. Corresponds to the JSON property evaluatorType

Returns:

  • (String)


2638
2639
2640
# File 'generated/google/apis/ml_v1/classes.rb', line 2638

def evaluator_type
  @evaluator_type
end

#hyperparametersGoogle::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec

Represents a set of hyperparameters to optimize. Corresponds to the JSON property hyperparameters



2643
2644
2645
# File 'generated/google/apis/ml_v1/classes.rb', line 2643

def hyperparameters
  @hyperparameters
end

#job_dirString

Optional. A Google Cloud Storage path in which to store training outputs and other data needed for training. This path is passed to your TensorFlow program as the '--job-dir' command-line argument. The benefit of specifying this field is that Cloud ML validates the path for use in training. Corresponds to the JSON property jobDir

Returns:

  • (String)


2651
2652
2653
# File 'generated/google/apis/ml_v1/classes.rb', line 2651

def job_dir
  @job_dir
end

#master_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property masterConfig



2656
2657
2658
# File 'generated/google/apis/ml_v1/classes.rb', line 2656

def master_config
  @master_config
end

#master_typeString

Optional. Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when scaleTier is set to CUSTOM. You can use certain Compute Engine machine types directly in this field. The following types are supported: - n1-standard-4 - n1-standard-8 - n1- standard-16 - n1-standard-32 - n1-standard-64 - n1-standard-96 - n1- highmem-2 - n1-highmem-4 - n1-highmem-8 - n1-highmem-16 - n1-highmem- 32 - n1-highmem-64 - n1-highmem-96 - n1-highcpu-16 - n1-highcpu-32 - n1-highcpu-64 - n1-highcpu-96 Learn more about using Compute Engine machine types. Alternatively, you can use the following legacy machine types: - standard - large_model - complex_model_s - complex_model_m - complex_model_l - standard_gpu - complex_model_m_gpu - complex_model_l_gpu - standard_p100

Returns:

  • (String)


2678
2679
2680
# File 'generated/google/apis/ml_v1/classes.rb', line 2678

def master_type
  @master_type
end

#networkString

Optional. The full name of the Compute Engine network to which the Job is peered. For example, projects/12345/global/networks/myVPC. The format of this field is projects/project/global/networks/network`, whereprojectis a project number (like12345) andnetworkis network name. Private services access must already be configured for the network. If left unspecified, the Job is not peered with any network. [Learn about using VPC Network Peering.](/ai-platform/training/docs/vpc-peering). Corresponds to the JSON propertynetwork`

Returns:

  • (String)


2689
2690
2691
# File 'generated/google/apis/ml_v1/classes.rb', line 2689

def network
  @network
end

#package_urisArray<String>

Required. The Google Cloud Storage location of the packages with the training program and any additional dependencies. The maximum number of package URIs is 100. Corresponds to the JSON property packageUris

Returns:

  • (Array<String>)


2696
2697
2698
# File 'generated/google/apis/ml_v1/classes.rb', line 2696

def package_uris
  @package_uris
end

#parameter_server_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property parameterServerConfig



2701
2702
2703
# File 'generated/google/apis/ml_v1/classes.rb', line 2701

def parameter_server_config
  @parameter_server_config
end

#parameter_server_countFixnum

Optional. The number of parameter server replicas to use for the training job. Each replica in the cluster will be of the type specified in parameter_server_type. This value can only be used when scale_tier is set to CUSTOM. If you set this value, you must also set parameter_server_type. The default value is zero. Corresponds to the JSON property parameterServerCount

Returns:

  • (Fixnum)


2710
2711
2712
# File 'generated/google/apis/ml_v1/classes.rb', line 2710

def parameter_server_count
  @parameter_server_count
end

#parameter_server_typeString

Optional. Specifies the type of virtual machine to use for your training job's parameter server. The supported values are the same as those described in the entry for master_type. This value must be consistent with the category of machine type that masterType uses. In other words, both must be Compute Engine machine types or both must be legacy machine types. This value must be present when scaleTier is set to CUSTOM and parameter_server_count is greater than zero. Corresponds to the JSON property parameterServerType

Returns:

  • (String)


2721
2722
2723
# File 'generated/google/apis/ml_v1/classes.rb', line 2721

def parameter_server_type
  @parameter_server_type
end

#python_moduleString

Required. The Python module name to run after installing the packages. Corresponds to the JSON property pythonModule

Returns:

  • (String)


2726
2727
2728
# File 'generated/google/apis/ml_v1/classes.rb', line 2726

def python_module
  @python_module
end

#python_versionString

Optional. The version of Python used in training. You must either specify this field or specify masterConfig.imageUri. The following Python versions are available: * Python '3.7' is available when runtime_version is set to '1.15' or later. * Python '3.5' is available when runtime_version is set to a version from '1.4' to '1.14'. * Python '2.7' is available when runtime_version is set to '1.15' or earlier. Read more about the Python versions available for each runtime version. Corresponds to the JSON property pythonVersion

Returns:

  • (String)


2738
2739
2740
# File 'generated/google/apis/ml_v1/classes.rb', line 2738

def python_version
  @python_version
end

#regionString

Required. The region to run the training job in. See the available regions for AI Platform Training. Corresponds to the JSON property region

Returns:

  • (String)


2744
2745
2746
# File 'generated/google/apis/ml_v1/classes.rb', line 2744

def region
  @region
end

#runtime_versionString

Optional. The AI Platform runtime version to use for training. You must either specify this field or specify masterConfig.imageUri. For more information, see the runtime version list and learn how to manage runtime versions. Corresponds to the JSON property runtimeVersion

Returns:

  • (String)


2753
2754
2755
# File 'generated/google/apis/ml_v1/classes.rb', line 2753

def runtime_version
  @runtime_version
end

#scale_tierString

Required. Specifies the machine types, the number of replicas for workers and parameter servers. Corresponds to the JSON property scaleTier

Returns:

  • (String)


2759
2760
2761
# File 'generated/google/apis/ml_v1/classes.rb', line 2759

def scale_tier
  @scale_tier
end

#schedulingGoogle::Apis::MlV1::GoogleCloudMlV1Scheduling

All parameters related to scheduling of training jobs. Corresponds to the JSON property scheduling



2764
2765
2766
# File 'generated/google/apis/ml_v1/classes.rb', line 2764

def scheduling
  @scheduling
end

#service_accountString

Optional. The email address of a service account to use when running the training appplication. You must have the iam.serviceAccounts.actAs permission for the specified service account. In addition, the AI Platform Training Google-managed service account must have the roles/iam. serviceAccountAdmin role for the specified service account. Learn more about configuring a service account. If not specified, the AI Platform Training Google-managed service account is used by default. Corresponds to the JSON property serviceAccount

Returns:

  • (String)


2776
2777
2778
# File 'generated/google/apis/ml_v1/classes.rb', line 2776

def 
  @service_account
end

#use_chief_in_tf_configBoolean Also known as: use_chief_in_tf_config?

Optional. Use chief instead of master in the TF_CONFIG environment variable when training with a custom container. Defaults to false. Learn more about this field. This field has no effect for training jobs that don't use a custom container. Corresponds to the JSON property useChiefInTfConfig

Returns:

  • (Boolean)


2785
2786
2787
# File 'generated/google/apis/ml_v1/classes.rb', line 2785

def use_chief_in_tf_config
  @use_chief_in_tf_config
end

#worker_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property workerConfig



2791
2792
2793
# File 'generated/google/apis/ml_v1/classes.rb', line 2791

def worker_config
  @worker_config
end

#worker_countFixnum

Optional. The number of worker replicas to use for the training job. Each replica in the cluster will be of the type specified in worker_type. This value can only be used when scale_tier is set to CUSTOM. If you set this value, you must also set worker_type. The default value is zero. Corresponds to the JSON property workerCount

Returns:

  • (Fixnum)


2799
2800
2801
# File 'generated/google/apis/ml_v1/classes.rb', line 2799

def worker_count
  @worker_count
end

#worker_typeString

Optional. Specifies the type of virtual machine to use for your training job's worker nodes. The supported values are the same as those described in the entry for masterType. This value must be consistent with the category of machine type that masterType uses. In other words, both must be Compute Engine machine types or both must be legacy machine types. If you use cloud_tpu for this value, see special instructions for configuring a custom TPU machine. This value must be present when scaleTier is set to CUSTOM and workerCount is greater than zero. Corresponds to the JSON property workerType

Returns:

  • (String)


2812
2813
2814
# File 'generated/google/apis/ml_v1/classes.rb', line 2812

def worker_type
  @worker_type
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
# File 'generated/google/apis/ml_v1/classes.rb', line 2819

def update!(**args)
  @args = args[:args] if args.key?(:args)
  @encryption_config = args[:encryption_config] if args.key?(:encryption_config)
  @evaluator_config = args[:evaluator_config] if args.key?(:evaluator_config)
  @evaluator_count = args[:evaluator_count] if args.key?(:evaluator_count)
  @evaluator_type = args[:evaluator_type] if args.key?(:evaluator_type)
  @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters)
  @job_dir = args[:job_dir] if args.key?(:job_dir)
  @master_config = args[:master_config] if args.key?(:master_config)
  @master_type = args[:master_type] if args.key?(:master_type)
  @network = args[:network] if args.key?(:network)
  @package_uris = args[:package_uris] if args.key?(:package_uris)
  @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config)
  @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count)
  @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type)
  @python_module = args[:python_module] if args.key?(:python_module)
  @python_version = args[:python_version] if args.key?(:python_version)
  @region = args[:region] if args.key?(:region)
  @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
  @scale_tier = args[:scale_tier] if args.key?(:scale_tier)
  @scheduling = args[:scheduling] if args.key?(:scheduling)
  @service_account = args[:service_account] if args.key?(:service_account)
  @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config)
  @worker_config = args[:worker_config] if args.key?(:worker_config)
  @worker_count = args[:worker_count] if args.key?(:worker_count)
  @worker_type = args[:worker_type] if args.key?(:worker_type)
end