Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
A trained machine learning Model.
Instance Attribute Summary collapse
-
#artifact_uri ⇒ String
Immutable.
-
#base_model_source ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelBaseModelSource
User input field to specify the base model source.
-
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions.
-
#create_time ⇒ String
Output only.
-
#data_stats ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDataStats
Stats of data used for train or evaluate the Model.
-
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only.
-
#description ⇒ String
The description of the Model.
-
#display_name ⇒ String
Required.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#etag ⇒ String
Used to perform consistent read-modify-write updates.
-
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
-
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models.
-
#metadata ⇒ Object
Immutable.
-
#metadata_artifact ⇒ String
Output only.
-
#metadata_schema_uri ⇒ String
Immutable.
-
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
-
#name ⇒ String
The resource name of the Model.
-
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
-
#pipeline_job ⇒ String
Optional.
-
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
-
#satisfies_pzi ⇒ Boolean
(also: #satisfies_pzi?)
Output only.
-
#satisfies_pzs ⇒ Boolean
(also: #satisfies_pzs?)
Output only.
-
#supported_deployment_resources_types ⇒ Array<String>
Output only.
-
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only.
-
#supported_input_storage_formats ⇒ Array<String>
Output only.
-
#supported_output_storage_formats ⇒ Array<String>
Output only.
-
#training_pipeline ⇒ String
Output only.
-
#update_time ⇒ String
Output only.
-
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via alias (i.e.
projects/
project/locations/
location/models/
model_id@
version_alias`instead of auto-generated version id (i.e.
projects/project
/ locations/location
/models/model_id
@version_id
). The format is a-z
0,126[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON property
versionAliases`. -
#version_create_time ⇒ String
Output only.
-
#version_description ⇒ String
The description of this version.
-
#version_id ⇒ String
Output only.
-
#version_update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
constructor
A new instance of GoogleCloudAiplatformV1Model.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
Returns a new instance of GoogleCloudAiplatformV1Model.
14118 14119 14120 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14118 def initialize(**args) update!(**args) end |
Instance Attribute Details
#artifact_uri ⇒ String
Immutable. The path to the directory containing the Model artifact and any of
its supporting files. Not required for AutoML Models.
Corresponds to the JSON property artifactUri
13883 13884 13885 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13883 def artifact_uri @artifact_uri end |
#base_model_source ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelBaseModelSource
User input field to specify the base model source. Currently it only supports
specifing the Model Garden models and Genie models.
Corresponds to the JSON property baseModelSource
13889 13890 13891 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13889 def base_model_source @base_model_source end |
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions. Some fields in this
message correspond to fields in the Kubernetes Container v1 core
specification.
Corresponds to the JSON property containerSpec
13897 13898 13899 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13897 def container_spec @container_spec end |
#create_time ⇒ String
Output only. Timestamp when this Model was uploaded into Vertex AI.
Corresponds to the JSON property createTime
13902 13903 13904 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13902 def create_time @create_time end |
#data_stats ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDataStats
Stats of data used for train or evaluate the Model.
Corresponds to the JSON property dataStats
13907 13908 13909 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13907 def data_stats @data_stats end |
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only. The pointers to DeployedModels created from this Model. Note that
Model could have been deployed to Endpoints in different Locations.
Corresponds to the JSON property deployedModels
13913 13914 13915 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13913 def deployed_models @deployed_models end |
#description ⇒ String
The description of the Model.
Corresponds to the JSON property description
13918 13919 13920 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13918 def description @description end |
#display_name ⇒ String
Required. The display name of the Model. The name can be up to 128 characters
long and can consist of any UTF-8 characters.
Corresponds to the JSON property displayName
13924 13925 13926 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13924 def display_name @display_name end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
13930 13931 13932 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13930 def encryption_spec @encryption_spec end |
#etag ⇒ String
Used to perform consistent read-modify-write updates. If not set, a blind "
overwrite" update happens.
Corresponds to the JSON property etag
13936 13937 13938 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13936 def etag @etag end |
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
Corresponds to the JSON property explanationSpec
13941 13942 13943 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13941 def explanation_spec @explanation_spec end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models. Label keys and
values can be no longer than 64 characters (Unicode codepoints), can only
contain lowercase letters, numeric characters, underscores and dashes.
International characters are allowed. See https://goo.gl/xmQnxf for more
information and examples of labels.
Corresponds to the JSON property labels
13950 13951 13952 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13950 def labels @labels end |
#metadata ⇒ Object
Immutable. An additional information about the Model; the schema of the
metadata can be found in metadata_schema. Unset if the Model does not have any
additional information.
Corresponds to the JSON property metadata
13957 13958 13959 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13957 def @metadata end |
#metadata_artifact ⇒ String
Output only. The resource name of the Artifact that was created in
MetadataStore when creating the Model. The Artifact resource name pattern is
projects/
project/locations/
location/metadataStores/
metadata_store/
artifacts/
artifact`.
Corresponds to the JSON property
metadataArtifact`
13965 13966 13967 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13965 def @metadata_artifact end |
#metadata_schema_uri ⇒ String
Immutable. Points to a YAML file stored on Google Cloud Storage describing
additional information about the Model, that is specific to it. Unset if the
Model does not have any additional information. The schema is defined as an
OpenAPI 3.0.2 Schema Object. AutoML Models always have this
field populated by Vertex AI, if no additional metadata is needed, this field
is set to an empty string. Note: The URI given on output will be immutable and
probably different, including the URI scheme, than the one given on input. The
output URI will point to a location where the user only has a read access.
Corresponds to the JSON property metadataSchemaUri
13978 13979 13980 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13978 def @metadata_schema_uri end |
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
Corresponds to the JSON property modelSourceInfo
13983 13984 13985 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13983 def model_source_info @model_source_info end |
#name ⇒ String
The resource name of the Model.
Corresponds to the JSON property name
13988 13989 13990 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13988 def name @name end |
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
Corresponds to the JSON property originalModelInfo
13993 13994 13995 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13993 def original_model_info @original_model_info end |
#pipeline_job ⇒ String
Optional. This field is populated if the model is produced by a pipeline job.
Corresponds to the JSON property pipelineJob
13998 13999 14000 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13998 def pipeline_job @pipeline_job end |
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via
PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
Corresponds to the JSON property predictSchemata
14004 14005 14006 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14004 def predict_schemata @predict_schemata end |
#satisfies_pzi ⇒ Boolean Also known as: satisfies_pzi?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzi
14009 14010 14011 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14009 def satisfies_pzi @satisfies_pzi end |
#satisfies_pzs ⇒ Boolean Also known as: satisfies_pzs?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzs
14015 14016 14017 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14015 def satisfies_pzs @satisfies_pzs end |
#supported_deployment_resources_types ⇒ Array<String>
Output only. When this Model is deployed, its prediction resources are
described by the prediction_resources
field of the Endpoint.deployed_models
object. Because not all Models support all resource configuration types, the
configuration types this Model supports are listed here. If no configuration
types are listed, the Model cannot be deployed to an Endpoint and does not
support online predictions (PredictionService.Predict or PredictionService.
Explain). Such a Model can serve predictions by using a BatchPredictionJob, if
it has at least one entry each in supported_input_storage_formats and
supported_output_storage_formats.
Corresponds to the JSON property supportedDeploymentResourcesTypes
14029 14030 14031 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14029 def supported_deployment_resources_types @supported_deployment_resources_types end |
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only. The formats in which this Model may be exported. If empty, this
Model is not available for export.
Corresponds to the JSON property supportedExportFormats
14035 14036 14037 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14035 def supported_export_formats @supported_export_formats end |
#supported_input_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
input_config. If PredictSchemata.instance_schema_uri exists, the instances
should be given as per that schema. The possible formats are: * jsonl
The
JSON Lines format, where each instance is a single line. Uses GcsSource. *
csv
The CSV format, where each instance is a single comma-separated line. The
first line in the file is the header, containing comma-separated field names.
Uses GcsSource. * tf-record
The TFRecord format, where each instance is a
single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip
Similar
to tf-record
, but the file is gzipped. Uses GcsSource. * bigquery
Each
instance is a single row in BigQuery. Uses BigQuerySource. * file-list
Each
line of the file is the location of an instance to process, uses gcs_source
field of the InputConfig object. If this Model doesn't support any of these
formats it means it cannot be used with a BatchPredictionJob. However, if it
has supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedInputStorageFormats
14054 14055 14056 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14054 def supported_input_storage_formats @supported_input_storage_formats end |
#supported_output_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.
prediction_schema_uri exist, the predictions are returned together with their
instances. In other words, the prediction has the original instance data first,
followed by the actual prediction content (as per the schema). The possible
formats are: * jsonl
The JSON Lines format, where each prediction is a
single line. Uses GcsDestination. * csv
The CSV format, where each
prediction is a single comma-separated line. The first line in the file is the
header, containing comma-separated field names. Uses GcsDestination. *
bigquery
Each prediction is a single row in a BigQuery table, uses
BigQueryDestination . If this Model doesn't support any of these formats it
means it cannot be used with a BatchPredictionJob. However, if it has
supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedOutputStorageFormats
14072 14073 14074 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14072 def supported_output_storage_formats @supported_output_storage_formats end |
#training_pipeline ⇒ String
Output only. The resource name of the TrainingPipeline that uploaded this
Model, if any.
Corresponds to the JSON property trainingPipeline
14078 14079 14080 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14078 def training_pipeline @training_pipeline end |
#update_time ⇒ String
Output only. Timestamp when this Model was most recently updated.
Corresponds to the JSON property updateTime
14083 14084 14085 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14083 def update_time @update_time end |
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via
alias (i.e. projects/
project/locations/
location/models/
model_id@
version_alias`instead of auto-generated version id (i.e.
projects/project
/
locations/location
/models/model_id
@version_id
). The format is a-z
0,126
[a-z0-9] to distinguish from version_id. A default version alias will be
created for the first version of the model, and there must be exactly one
default version alias for a model.
Corresponds to the JSON property
versionAliases`
14094 14095 14096 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14094 def version_aliases @version_aliases end |
#version_create_time ⇒ String
Output only. Timestamp when this version was created.
Corresponds to the JSON property versionCreateTime
14099 14100 14101 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14099 def version_create_time @version_create_time end |
#version_description ⇒ String
The description of this version.
Corresponds to the JSON property versionDescription
14104 14105 14106 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14104 def version_description @version_description end |
#version_id ⇒ String
Output only. Immutable. The version ID of the model. A new version is
committed when a new model version is uploaded or trained under an existing
model id. It is an auto-incrementing decimal number in string representation.
Corresponds to the JSON property versionId
14111 14112 14113 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14111 def version_id @version_id end |
#version_update_time ⇒ String
Output only. Timestamp when this version was most recently updated.
Corresponds to the JSON property versionUpdateTime
14116 14117 14118 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14116 def version_update_time @version_update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14123 def update!(**args) @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri) @base_model_source = args[:base_model_source] if args.key?(:base_model_source) @container_spec = args[:container_spec] if args.key?(:container_spec) @create_time = args[:create_time] if args.key?(:create_time) @data_stats = args[:data_stats] if args.key?(:data_stats) @deployed_models = args[:deployed_models] if args.key?(:deployed_models) @description = args[:description] if args.key?(:description) @display_name = args[:display_name] if args.key?(:display_name) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @etag = args[:etag] if args.key?(:etag) @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec) @labels = args[:labels] if args.key?(:labels) @metadata = args[:metadata] if args.key?(:metadata) @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact) @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri) @model_source_info = args[:model_source_info] if args.key?(:model_source_info) @name = args[:name] if args.key?(:name) @original_model_info = args[:original_model_info] if args.key?(:original_model_info) @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job) @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata) @satisfies_pzi = args[:satisfies_pzi] if args.key?(:satisfies_pzi) @satisfies_pzs = args[:satisfies_pzs] if args.key?(:satisfies_pzs) @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types) @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats) @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats) @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats) @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline) @update_time = args[:update_time] if args.key?(:update_time) @version_aliases = args[:version_aliases] if args.key?(:version_aliases) @version_create_time = args[:version_create_time] if args.key?(:version_create_time) @version_description = args[:version_description] if args.key?(:version_description) @version_id = args[:version_id] if args.key?(:version_id) @version_update_time = args[:version_update_time] if args.key?(:version_update_time) end |