Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for classification evaluation results.
Instance Attribute Summary collapse
-
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric.
-
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric.
-
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each
confidenceThresholdin 0.00,0.05,0.10,...,0.95,0.96,0.97,0. -
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
-
#log_loss ⇒ Float
The Log Loss metric.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
25437 25438 25439 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25437 def initialize(**args) update!(**args) end |
Instance Attribute Details
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric. Micro-averaged for the overall
evaluation.
Corresponds to the JSON property auPrc
25410 25411 25412 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25410 def au_prc @au_prc end |
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric. Micro-averaged
for the overall evaluation.
Corresponds to the JSON property auRoc
25416 25417 25418 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25416 def au_roc @au_roc end |
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each confidenceThreshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.
98,0.99 and positionThreshold = INT32_MAX_VALUE. ROC and precision-recall
curves, and other aggregated metrics are derived from them. The confidence
metrics entries may also be supplied for additional values of
positionThreshold, but from these no aggregated metrics are computed.
Corresponds to the JSON property confidenceMetrics
25425 25426 25427 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25425 def confidence_metrics @confidence_metrics end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
Corresponds to the JSON property confusionMatrix
25430 25431 25432 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25430 def confusion_matrix @confusion_matrix end |
#log_loss ⇒ Float
The Log Loss metric.
Corresponds to the JSON property logLoss
25435 25436 25437 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25435 def log_loss @log_loss end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25442 25443 25444 25445 25446 25447 25448 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25442 def update!(**args) @au_prc = args[:au_prc] if args.key?(:au_prc) @au_roc = args[:au_roc] if args.key?(:au_roc) @confidence_metrics = args[:confidence_metrics] if args.key?(:confidence_metrics) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @log_loss = args[:log_loss] if args.key?(:log_loss) end |