Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/ml_v1/classes.rb,
lib/google/apis/ml_v1/representations.rb,
lib/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command- line arguments and/or in a YAML configuration file referenced from the -- config command-line argument. For details, see the guide to submitting a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#enable_web_access ⇒ Boolean
(also: #enable_web_access?)
Optional.
-
#encryption_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1EncryptionConfig
Represents a custom encryption key configuration that can be applied to a resource.
-
#evaluator_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#evaluator_count ⇒ Fixnum
Optional.
-
#evaluator_type ⇒ String
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#master_type ⇒ String
Optional.
-
#network ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#parameter_server_count ⇒ Fixnum
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#python_version ⇒ String
Optional.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#scheduling ⇒ Google::Apis::MlV1::GoogleCloudMlV1Scheduling
All parameters related to scheduling of training jobs.
-
#service_account ⇒ String
Optional.
-
#use_chief_in_tf_config ⇒ Boolean
(also: #use_chief_in_tf_config?)
Optional.
-
#worker_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#worker_count ⇒ Fixnum
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput.
2843 2844 2845 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2843 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command-line arguments passed to the training application when it
starts. If your job uses a custom container, then the arguments are passed to
the container's ENTRYPOINT
command.
Corresponds to the JSON property args
2635 2636 2637 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2635 def args @args end |
#enable_web_access ⇒ Boolean Also known as: enable_web_access?
Optional. Whether you want AI Platform Training to enable interactive shell
access to training containers. If set to true
, you can access
interactive shells at the URIs given by TrainingOutput.web_access_uris or
HyperparameterOutput.web_access_uris (within TrainingOutput.trials).
Corresponds to the JSON property enableWebAccess
2644 2645 2646 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2644 def enable_web_access @enable_web_access end |
#encryption_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1EncryptionConfig
Represents a custom encryption key configuration that can be applied to a
resource.
Corresponds to the JSON property encryptionConfig
2651 2652 2653 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2651 def encryption_config @encryption_config end |
#evaluator_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property evaluatorConfig
2656 2657 2658 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2656 def evaluator_config @evaluator_config end |
#evaluator_count ⇒ Fixnum
Optional. The number of evaluator replicas to use for the training job. Each
replica in the cluster will be of the type specified in evaluator_type
. This
value can only be used when scale_tier
is set to CUSTOM
. If you set this
value, you must also set evaluator_type
. The default value is zero.
Corresponds to the JSON property evaluatorCount
2664 2665 2666 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2664 def evaluator_count @evaluator_count end |
#evaluator_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's
evaluator nodes. The supported values are the same as those described in the
entry for masterType
. This value must be consistent with the category of
machine type that masterType
uses. In other words, both must be Compute
Engine machine types or both must be legacy machine types. This value must be
present when scaleTier
is set to CUSTOM
and evaluatorCount
is greater
than zero.
Corresponds to the JSON property evaluatorType
2675 2676 2677 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2675 def evaluator_type @evaluator_type end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
2680 2681 2682 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2680 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs and
other data needed for training. This path is passed to your TensorFlow program
as the '--job-dir' command-line argument. The benefit of specifying this field
is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
2688 2689 2690 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2688 def job_dir @job_dir end |
#master_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property masterConfig
2693 2694 2695 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2693 def master_config @master_config end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's
master worker. You must specify this field when scaleTier
is set to CUSTOM
.
You can use certain Compute Engine machine types directly in this field. See
the list of compatible Compute Engine machine types. Alternatively, you can use
the certain legacy machine types in this field. See the list of legacy
machine types.
Finally, if you want to use a TPU for training, specify cloud_tpu
in this
field. Learn more about the special configuration options for training with
TPUs.
Corresponds to the JSON property masterType
2707 2708 2709 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2707 def master_type @master_type end |
#network ⇒ String
Optional. The full name of the Compute Engine network to
which the Job is peered. For example, projects/12345/global/networks/myVPC
.
The format of this field is projects/
project/global/networks/
network`,
where
projectis a project number (like
12345) and
networkis network
name. Private services access must already be configured for the network. If
left unspecified, the Job is not peered with any network. [Learn about using
VPC Network Peering.](/ai-platform/training/docs/vpc-peering).
Corresponds to the JSON property
network`
2718 2719 2720 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2718 def network @network end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with the training
program and any additional dependencies. The maximum number of package URIs is
100.
Corresponds to the JSON property packageUris
2725 2726 2727 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2725 def package_uris @package_uris end |
#parameter_server_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property parameterServerConfig
2730 2731 2732 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2730 def parameter_server_config @parameter_server_config end |
#parameter_server_count ⇒ Fixnum
Optional. The number of parameter server replicas to use for the training job.
Each replica in the cluster will be of the type specified in
parameter_server_type
. This value can only be used when scale_tier
is set
to CUSTOM
. If you set this value, you must also set parameter_server_type
.
The default value is zero.
Corresponds to the JSON property parameterServerCount
2739 2740 2741 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2739 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's
parameter server. The supported values are the same as those described in the
entry for master_type
. This value must be consistent with the category of
machine type that masterType
uses. In other words, both must be Compute
Engine machine types or both must be legacy machine types. This value must be
present when scaleTier
is set to CUSTOM
and parameter_server_count
is
greater than zero.
Corresponds to the JSON property parameterServerType
2750 2751 2752 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2750 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
2755 2756 2757 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2755 def python_module @python_module end |
#python_version ⇒ String
Optional. The version of Python used in training. You must either specify this
field or specify masterConfig.imageUri
. The following Python versions are
available: * Python '3.7' is available when runtime_version
is set to '1.15'
or later. * Python '3.5' is available when runtime_version
is set to a
version from '1.4' to '1.14'. * Python '2.7' is available when
runtime_version
is set to '1.15' or earlier. Read more about the Python
versions available for each runtime version.
Corresponds to the JSON property pythonVersion
2767 2768 2769 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2767 def python_version @python_version end |
#region ⇒ String
Required. The region to run the training job in. See the available regions for AI Platform Training.
Corresponds to the JSON property region
2773 2774 2775 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2773 def region @region end |
#runtime_version ⇒ String
Optional. The AI Platform runtime version to use for training. You must either
specify this field or specify masterConfig.imageUri
. For more information,
see the runtime version list
and learn how to manage runtime versions.
Corresponds to the JSON property runtimeVersion
2782 2783 2784 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2782 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers and
parameter servers.
Corresponds to the JSON property scaleTier
2788 2789 2790 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2788 def scale_tier @scale_tier end |
#scheduling ⇒ Google::Apis::MlV1::GoogleCloudMlV1Scheduling
All parameters related to scheduling of training jobs.
Corresponds to the JSON property scheduling
2793 2794 2795 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2793 def scheduling @scheduling end |
#service_account ⇒ String
Optional. The email address of a service account to use when running the
training appplication. You must have the iam.serviceAccounts.actAs
permission for the specified service account. In addition, the AI Platform
Training Google-managed service account must have the roles/iam.
serviceAccountAdmin
role for the specified service account. Learn more about
configuring a service account. If not specified, the AI Platform Training Google-managed service
account is used by default.
Corresponds to the JSON property serviceAccount
2805 2806 2807 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2805 def service_account @service_account end |
#use_chief_in_tf_config ⇒ Boolean Also known as: use_chief_in_tf_config?
Optional. Use chief
instead of master
in the TF_CONFIG
environment
variable when training with a custom container. Defaults to false
. Learn
more about this field. This field has no effect for training jobs that
don't use a custom container.
Corresponds to the JSON property useChiefInTfConfig
2814 2815 2816 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2814 def use_chief_in_tf_config @use_chief_in_tf_config end |
#worker_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property workerConfig
2820 2821 2822 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2820 def worker_config @worker_config end |
#worker_count ⇒ Fixnum
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type
. This
value can only be used when scale_tier
is set to CUSTOM
. If you set this
value, you must also set worker_type
. The default value is zero.
Corresponds to the JSON property workerCount
2828 2829 2830 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2828 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's
worker nodes. The supported values are the same as those described in the
entry for masterType
. This value must be consistent with the category of
machine type that masterType
uses. In other words, both must be Compute
Engine machine types or both must be legacy machine types. If you use
cloud_tpu
for this value, see special instructions for configuring a custom
TPU machine. This value must be present when scaleTier
is set to CUSTOM
and workerCount
is greater than zero.
Corresponds to the JSON property workerType
2841 2842 2843 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2841 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 |
# File 'lib/google/apis/ml_v1/classes.rb', line 2848 def update!(**args) @args = args[:args] if args.key?(:args) @enable_web_access = args[:enable_web_access] if args.key?(:enable_web_access) @encryption_config = args[:encryption_config] if args.key?(:encryption_config) @evaluator_config = args[:evaluator_config] if args.key?(:evaluator_config) @evaluator_count = args[:evaluator_count] if args.key?(:evaluator_count) @evaluator_type = args[:evaluator_type] if args.key?(:evaluator_type) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @job_dir = args[:job_dir] if args.key?(:job_dir) @master_config = args[:master_config] if args.key?(:master_config) @master_type = args[:master_type] if args.key?(:master_type) @network = args[:network] if args.key?(:network) @package_uris = args[:package_uris] if args.key?(:package_uris) @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @python_module = args[:python_module] if args.key?(:python_module) @python_version = args[:python_version] if args.key?(:python_version) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @scheduling = args[:scheduling] if args.key?(:scheduling) @service_account = args[:service_account] if args.key?(:service_account) @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config) @worker_config = args[:worker_config] if args.key?(:worker_config) @worker_count = args[:worker_count] if args.key?(:worker_count) @worker_type = args[:worker_type] if args.key?(:worker_type) end |