Class: Google::Cloud::AIPlatform::V1::ExplanationMetadata
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ExplanationMetadata
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb
Overview
Metadata describing the Model's input and output for explanation.
Defined Under Namespace
Classes: InputMetadata, InputsEntry, OutputMetadata, OutputsEntry
Instance Attribute Summary collapse
-
#feature_attributions_schema_uri ⇒ ::String
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions].
-
#inputs ⇒ ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata}
Required.
-
#latent_space_source ⇒ ::String
Name of the source to generate embeddings for example based explanations.
-
#outputs ⇒ ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata}
Required.
Instance Attribute Details
#feature_attributions_schema_uri ⇒ ::String
Returns Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 67 class ExplanationMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Metadata of the input of a feature. # # Fields other than # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#input_baselines InputMetadata.input_baselines} # are applicable only for Models that are using Vertex AI-provided images for # Tensorflow. # @!attribute [rw] input_baselines # @return [::Array<::Google::Protobuf::Value>] # Baseline inputs for this feature. # # If no baseline is specified, Vertex AI chooses the baseline for this # feature. If multiple baselines are specified, Vertex AI returns the # average attributions across them in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}. # # For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape # of each baseline must match the shape of the input tensor. If a scalar is # provided, we broadcast to the same shape as the input tensor. # # For custom images, the element of the baselines must be in the same # format as the feature's input in the # {::Google::Cloud::AIPlatform::V1::ExplainRequest#instances instance}[]. The # schema of any single instance may be specified via Endpoint's # DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] # [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] # {::Google::Cloud::AIPlatform::V1::PredictSchemata#instance_schema_uri instance_schema_uri}. # @!attribute [rw] input_tensor_name # @return [::String] # Name of the input tensor for this feature. Required and is only # applicable to Vertex AI-provided images for Tensorflow. # @!attribute [rw] encoding # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding] # Defines how the feature is encoded into the input tensor. Defaults to # IDENTITY. # @!attribute [rw] modality # @return [::String] # Modality of the feature. Valid values are: numeric, image. Defaults to # numeric. # @!attribute [rw] feature_value_domain # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain] # The domain details of the input feature value. Like min/max, original # mean or standard deviation if normalized. # @!attribute [rw] indices_tensor_name # @return [::String] # Specifies the index of the values of the input tensor. # Required when the input tensor is a sparse representation. Refer to # Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] dense_shape_tensor_name # @return [::String] # Specifies the shape of the values of the input if the input is a sparse # representation. Refer to Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] index_feature_mapping # @return [::Array<::String>] # A list of feature names for each index in the input tensor. # Required when the input # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoding InputMetadata.encoding} # is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. # @!attribute [rw] encoded_tensor_name # @return [::String] # Encoded tensor is a transformation of the input tensor. Must be provided # if choosing # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] # or [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] # and the input tensor is not differentiable. # # An encoded tensor is generated if the input tensor is encoded by a lookup # table. # @!attribute [rw] encoded_baselines # @return [::Array<::Google::Protobuf::Value>] # A list of baselines for the encoded tensor. # # The shape of each baseline should match the shape of the encoded tensor. # If a scalar is provided, Vertex AI broadcasts to the same shape as the # encoded tensor. # @!attribute [rw] visualization # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization] # Visualization configurations for image explanation. # @!attribute [rw] group_name # @return [::String] # Name of the group that the input belongs to. Features with the same group # name will be treated as one feature when computing attributions. Features # grouped together can have different shapes in value. If provided, there # will be one single attribution generated in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}, # keyed by the group name. class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end # Metadata of the prediction output to be explained. # @!attribute [rw] index_display_name_mapping # @return [::Google::Protobuf::Value] # Static mapping between the index and display name. # # Use this if the outputs are a deterministic n-dimensional array, e.g. a # list of scores of all the classes in a pre-defined order for a # multi-classification Model. It's not feasible if the outputs are # non-deterministic, e.g. the Model produces top-k classes or sort the # outputs by their values. # # The shape of the value must be an n-dimensional array of strings. The # number of dimensions must match that of the outputs to be explained. # The # {::Google::Cloud::AIPlatform::V1::Attribution#output_display_name Attribution.output_display_name} # is populated by locating in the mapping with # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index}. # @!attribute [rw] display_name_mapping_key # @return [::String] # Specify a field name in the prediction to look for the display name. # # Use this if the prediction contains the display names for the outputs. # # The display names in the prediction must have the same shape of the # outputs, so that it can be located by # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index} # for a specific output. # @!attribute [rw] output_tensor_name # @return [::String] # Name of the output tensor. Required and is only applicable to Vertex # AI provided images for Tensorflow. class OutputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata] class InputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata] class OutputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#inputs ⇒ ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata}
Returns Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in instance.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 67 class ExplanationMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Metadata of the input of a feature. # # Fields other than # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#input_baselines InputMetadata.input_baselines} # are applicable only for Models that are using Vertex AI-provided images for # Tensorflow. # @!attribute [rw] input_baselines # @return [::Array<::Google::Protobuf::Value>] # Baseline inputs for this feature. # # If no baseline is specified, Vertex AI chooses the baseline for this # feature. If multiple baselines are specified, Vertex AI returns the # average attributions across them in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}. # # For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape # of each baseline must match the shape of the input tensor. If a scalar is # provided, we broadcast to the same shape as the input tensor. # # For custom images, the element of the baselines must be in the same # format as the feature's input in the # {::Google::Cloud::AIPlatform::V1::ExplainRequest#instances instance}[]. The # schema of any single instance may be specified via Endpoint's # DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] # [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] # {::Google::Cloud::AIPlatform::V1::PredictSchemata#instance_schema_uri instance_schema_uri}. # @!attribute [rw] input_tensor_name # @return [::String] # Name of the input tensor for this feature. Required and is only # applicable to Vertex AI-provided images for Tensorflow. # @!attribute [rw] encoding # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding] # Defines how the feature is encoded into the input tensor. Defaults to # IDENTITY. # @!attribute [rw] modality # @return [::String] # Modality of the feature. Valid values are: numeric, image. Defaults to # numeric. # @!attribute [rw] feature_value_domain # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain] # The domain details of the input feature value. Like min/max, original # mean or standard deviation if normalized. # @!attribute [rw] indices_tensor_name # @return [::String] # Specifies the index of the values of the input tensor. # Required when the input tensor is a sparse representation. Refer to # Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] dense_shape_tensor_name # @return [::String] # Specifies the shape of the values of the input if the input is a sparse # representation. Refer to Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] index_feature_mapping # @return [::Array<::String>] # A list of feature names for each index in the input tensor. # Required when the input # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoding InputMetadata.encoding} # is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. # @!attribute [rw] encoded_tensor_name # @return [::String] # Encoded tensor is a transformation of the input tensor. Must be provided # if choosing # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] # or [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] # and the input tensor is not differentiable. # # An encoded tensor is generated if the input tensor is encoded by a lookup # table. # @!attribute [rw] encoded_baselines # @return [::Array<::Google::Protobuf::Value>] # A list of baselines for the encoded tensor. # # The shape of each baseline should match the shape of the encoded tensor. # If a scalar is provided, Vertex AI broadcasts to the same shape as the # encoded tensor. # @!attribute [rw] visualization # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization] # Visualization configurations for image explanation. # @!attribute [rw] group_name # @return [::String] # Name of the group that the input belongs to. Features with the same group # name will be treated as one feature when computing attributions. Features # grouped together can have different shapes in value. If provided, there # will be one single attribution generated in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}, # keyed by the group name. class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end # Metadata of the prediction output to be explained. # @!attribute [rw] index_display_name_mapping # @return [::Google::Protobuf::Value] # Static mapping between the index and display name. # # Use this if the outputs are a deterministic n-dimensional array, e.g. a # list of scores of all the classes in a pre-defined order for a # multi-classification Model. It's not feasible if the outputs are # non-deterministic, e.g. the Model produces top-k classes or sort the # outputs by their values. # # The shape of the value must be an n-dimensional array of strings. The # number of dimensions must match that of the outputs to be explained. # The # {::Google::Cloud::AIPlatform::V1::Attribution#output_display_name Attribution.output_display_name} # is populated by locating in the mapping with # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index}. # @!attribute [rw] display_name_mapping_key # @return [::String] # Specify a field name in the prediction to look for the display name. # # Use this if the prediction contains the display names for the outputs. # # The display names in the prediction must have the same shape of the # outputs, so that it can be located by # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index} # for a specific output. # @!attribute [rw] output_tensor_name # @return [::String] # Name of the output tensor. Required and is only applicable to Vertex # AI provided images for Tensorflow. class OutputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata] class InputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata] class OutputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#latent_space_source ⇒ ::String
Returns Name of the source to generate embeddings for example based explanations.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 67 class ExplanationMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Metadata of the input of a feature. # # Fields other than # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#input_baselines InputMetadata.input_baselines} # are applicable only for Models that are using Vertex AI-provided images for # Tensorflow. # @!attribute [rw] input_baselines # @return [::Array<::Google::Protobuf::Value>] # Baseline inputs for this feature. # # If no baseline is specified, Vertex AI chooses the baseline for this # feature. If multiple baselines are specified, Vertex AI returns the # average attributions across them in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}. # # For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape # of each baseline must match the shape of the input tensor. If a scalar is # provided, we broadcast to the same shape as the input tensor. # # For custom images, the element of the baselines must be in the same # format as the feature's input in the # {::Google::Cloud::AIPlatform::V1::ExplainRequest#instances instance}[]. The # schema of any single instance may be specified via Endpoint's # DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] # [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] # {::Google::Cloud::AIPlatform::V1::PredictSchemata#instance_schema_uri instance_schema_uri}. # @!attribute [rw] input_tensor_name # @return [::String] # Name of the input tensor for this feature. Required and is only # applicable to Vertex AI-provided images for Tensorflow. # @!attribute [rw] encoding # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding] # Defines how the feature is encoded into the input tensor. Defaults to # IDENTITY. # @!attribute [rw] modality # @return [::String] # Modality of the feature. Valid values are: numeric, image. Defaults to # numeric. # @!attribute [rw] feature_value_domain # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain] # The domain details of the input feature value. Like min/max, original # mean or standard deviation if normalized. # @!attribute [rw] indices_tensor_name # @return [::String] # Specifies the index of the values of the input tensor. # Required when the input tensor is a sparse representation. Refer to # Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] dense_shape_tensor_name # @return [::String] # Specifies the shape of the values of the input if the input is a sparse # representation. Refer to Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] index_feature_mapping # @return [::Array<::String>] # A list of feature names for each index in the input tensor. # Required when the input # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoding InputMetadata.encoding} # is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. # @!attribute [rw] encoded_tensor_name # @return [::String] # Encoded tensor is a transformation of the input tensor. Must be provided # if choosing # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] # or [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] # and the input tensor is not differentiable. # # An encoded tensor is generated if the input tensor is encoded by a lookup # table. # @!attribute [rw] encoded_baselines # @return [::Array<::Google::Protobuf::Value>] # A list of baselines for the encoded tensor. # # The shape of each baseline should match the shape of the encoded tensor. # If a scalar is provided, Vertex AI broadcasts to the same shape as the # encoded tensor. # @!attribute [rw] visualization # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization] # Visualization configurations for image explanation. # @!attribute [rw] group_name # @return [::String] # Name of the group that the input belongs to. Features with the same group # name will be treated as one feature when computing attributions. Features # grouped together can have different shapes in value. If provided, there # will be one single attribution generated in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}, # keyed by the group name. class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end # Metadata of the prediction output to be explained. # @!attribute [rw] index_display_name_mapping # @return [::Google::Protobuf::Value] # Static mapping between the index and display name. # # Use this if the outputs are a deterministic n-dimensional array, e.g. a # list of scores of all the classes in a pre-defined order for a # multi-classification Model. It's not feasible if the outputs are # non-deterministic, e.g. the Model produces top-k classes or sort the # outputs by their values. # # The shape of the value must be an n-dimensional array of strings. The # number of dimensions must match that of the outputs to be explained. # The # {::Google::Cloud::AIPlatform::V1::Attribution#output_display_name Attribution.output_display_name} # is populated by locating in the mapping with # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index}. # @!attribute [rw] display_name_mapping_key # @return [::String] # Specify a field name in the prediction to look for the display name. # # Use this if the prediction contains the display names for the outputs. # # The display names in the prediction must have the same shape of the # outputs, so that it can be located by # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index} # for a specific output. # @!attribute [rw] output_tensor_name # @return [::String] # Name of the output tensor. Required and is only applicable to Vertex # AI provided images for Tensorflow. class OutputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata] class InputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata] class OutputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#outputs ⇒ ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata}
Returns Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction to be explained.
Currently only one key is allowed.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 67 class ExplanationMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Metadata of the input of a feature. # # Fields other than # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#input_baselines InputMetadata.input_baselines} # are applicable only for Models that are using Vertex AI-provided images for # Tensorflow. # @!attribute [rw] input_baselines # @return [::Array<::Google::Protobuf::Value>] # Baseline inputs for this feature. # # If no baseline is specified, Vertex AI chooses the baseline for this # feature. If multiple baselines are specified, Vertex AI returns the # average attributions across them in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}. # # For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape # of each baseline must match the shape of the input tensor. If a scalar is # provided, we broadcast to the same shape as the input tensor. # # For custom images, the element of the baselines must be in the same # format as the feature's input in the # {::Google::Cloud::AIPlatform::V1::ExplainRequest#instances instance}[]. The # schema of any single instance may be specified via Endpoint's # DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] # [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] # {::Google::Cloud::AIPlatform::V1::PredictSchemata#instance_schema_uri instance_schema_uri}. # @!attribute [rw] input_tensor_name # @return [::String] # Name of the input tensor for this feature. Required and is only # applicable to Vertex AI-provided images for Tensorflow. # @!attribute [rw] encoding # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding] # Defines how the feature is encoded into the input tensor. Defaults to # IDENTITY. # @!attribute [rw] modality # @return [::String] # Modality of the feature. Valid values are: numeric, image. Defaults to # numeric. # @!attribute [rw] feature_value_domain # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain] # The domain details of the input feature value. Like min/max, original # mean or standard deviation if normalized. # @!attribute [rw] indices_tensor_name # @return [::String] # Specifies the index of the values of the input tensor. # Required when the input tensor is a sparse representation. Refer to # Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] dense_shape_tensor_name # @return [::String] # Specifies the shape of the values of the input if the input is a sparse # representation. Refer to Tensorflow documentation for more details: # https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. # @!attribute [rw] index_feature_mapping # @return [::Array<::String>] # A list of feature names for each index in the input tensor. # Required when the input # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoding InputMetadata.encoding} # is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. # @!attribute [rw] encoded_tensor_name # @return [::String] # Encoded tensor is a transformation of the input tensor. Must be provided # if choosing # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] # or [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] # and the input tensor is not differentiable. # # An encoded tensor is generated if the input tensor is encoded by a lookup # table. # @!attribute [rw] encoded_baselines # @return [::Array<::Google::Protobuf::Value>] # A list of baselines for the encoded tensor. # # The shape of each baseline should match the shape of the encoded tensor. # If a scalar is provided, Vertex AI broadcasts to the same shape as the # encoded tensor. # @!attribute [rw] visualization # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization] # Visualization configurations for image explanation. # @!attribute [rw] group_name # @return [::String] # Name of the group that the input belongs to. Features with the same group # name will be treated as one feature when computing attributions. Features # grouped together can have different shapes in value. If provided, there # will be one single attribution generated in # {::Google::Cloud::AIPlatform::V1::Attribution#feature_attributions Attribution.feature_attributions}, # keyed by the group name. class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end # Metadata of the prediction output to be explained. # @!attribute [rw] index_display_name_mapping # @return [::Google::Protobuf::Value] # Static mapping between the index and display name. # # Use this if the outputs are a deterministic n-dimensional array, e.g. a # list of scores of all the classes in a pre-defined order for a # multi-classification Model. It's not feasible if the outputs are # non-deterministic, e.g. the Model produces top-k classes or sort the # outputs by their values. # # The shape of the value must be an n-dimensional array of strings. The # number of dimensions must match that of the outputs to be explained. # The # {::Google::Cloud::AIPlatform::V1::Attribution#output_display_name Attribution.output_display_name} # is populated by locating in the mapping with # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index}. # @!attribute [rw] display_name_mapping_key # @return [::String] # Specify a field name in the prediction to look for the display name. # # Use this if the prediction contains the display names for the outputs. # # The display names in the prediction must have the same shape of the # outputs, so that it can be located by # {::Google::Cloud::AIPlatform::V1::Attribution#output_index Attribution.output_index} # for a specific output. # @!attribute [rw] output_tensor_name # @return [::String] # Name of the output tensor. Required and is only applicable to Vertex # AI provided images for Tensorflow. class OutputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata] class InputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::OutputMetadata] class OutputsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |