Class: Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb
Overview
Metadata of the input of a feature.
Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
Defined Under Namespace
Modules: Encoding Classes: FeatureValueDomain, Visualization
Instance Attribute Summary collapse
-
#dense_shape_tensor_name ⇒ ::String
Specifies the shape of the values of the input if the input is a sparse representation.
-
#encoded_baselines ⇒ ::Array<::Google::Protobuf::Value>
A list of baselines for the encoded tensor.
-
#encoded_tensor_name ⇒ ::String
Encoded tensor is a transformation of the input tensor.
-
#encoding ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding
Defines how the feature is encoded into the input tensor.
-
#feature_value_domain ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain
The domain details of the input feature value.
-
#group_name ⇒ ::String
Name of the group that the input belongs to.
-
#index_feature_mapping ⇒ ::Array<::String>
A list of feature names for each index in the input tensor.
-
#indices_tensor_name ⇒ ::String
Specifies the index of the values of the input tensor.
-
#input_baselines ⇒ ::Array<::Google::Protobuf::Value>
Baseline inputs for this feature.
-
#input_tensor_name ⇒ ::String
Name of the input tensor for this feature.
-
#modality ⇒ ::String
Modality of the feature.
-
#visualization ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization
Visualization configurations for image explanation.
Instance Attribute Details
#dense_shape_tensor_name ⇒ ::String
Returns Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#encoded_baselines ⇒ ::Array<::Google::Protobuf::Value>
Returns A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#encoded_tensor_name ⇒ ::String
Returns Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable.
An encoded tensor is generated if the input tensor is encoded by a lookup table.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#encoding ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding
Returns Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#feature_value_domain ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::FeatureValueDomain
Returns The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#group_name ⇒ ::String
Returns Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#index_feature_mapping ⇒ ::Array<::String>
Returns A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#indices_tensor_name ⇒ ::String
Returns Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#input_baselines ⇒ ::Array<::Google::Protobuf::Value>
Returns Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] instance_schema_uri.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#input_tensor_name ⇒ ::String
Returns Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#modality ⇒ ::String
Returns Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |
#visualization ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization
Returns Visualization configurations for image explanation.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 160 class InputMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Domain details of the input feature value. Provides numeric information # about the feature, such as its range (min, max). If the feature has been # pre-processed, for example with z-scoring, then it provides information # about how to recover the original feature. For example, if the input # feature is an image and it has been pre-processed to obtain 0-mean and # stddev = 1 values, then original_mean, and original_stddev refer to the # mean and stddev of the original feature (e.g. image tensor) from which # input feature (with mean = 0 and stddev = 1) was obtained. # @!attribute [rw] min_value # @return [::Float] # The minimum permissible value for this feature. # @!attribute [rw] max_value # @return [::Float] # The maximum permissible value for this feature. # @!attribute [rw] original_mean # @return [::Float] # If this input feature has been normalized to a mean value of 0, # the original_mean specifies the mean value of the domain prior to # normalization. # @!attribute [rw] original_stddev # @return [::Float] # If this input feature has been normalized to a standard deviation of # 1.0, the original_stddev specifies the standard deviation of the domain # prior to normalization. class FeatureValueDomain include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Visualization configurations for image explanation. # @!attribute [rw] type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type] # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. # OUTLINES shows regions of attribution, while PIXELS shows per-pixel # attribution. Defaults to OUTLINES. # @!attribute [rw] polarity # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity] # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. # @!attribute [rw] color_map # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap] # The color scheme used for the highlighted areas. # # Defaults to PINK_GREEN for # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], # which shows positive attributions in green and negative in pink. # # Defaults to VIRIDIS for # [XRAI # attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], # which highlights the most influential regions in yellow and the least # influential in blue. # @!attribute [rw] clip_percent_upperbound # @return [::Float] # Excludes attributions above the specified percentile from the # highlighted areas. Using the clip_percent_upperbound and # clip_percent_lowerbound together can be useful for filtering out noise # and making it easier to see areas of strong attribution. Defaults to # 99.9. # @!attribute [rw] clip_percent_lowerbound # @return [::Float] # Excludes attributions below the specified percentile, from the # highlighted areas. Defaults to 62. # @!attribute [rw] overlay_type # @return [::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType] # How the original image is displayed in the visualization. # Adjusting the overlay can help increase visual clarity if the original # image makes it difficult to view the visualization. Defaults to NONE. class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end # Defines how a feature is encoded. Defaults to IDENTITY. module Encoding # Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0 # The tensor represents one feature. IDENTITY = 1 # The tensor represents a bag of features where each index maps to # a feature. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [27, 6.0, 150] # index_feature_mapping = ["age", "height", "weight"] # ``` BAG_OF_FEATURES = 2 # The tensor represents a bag of features where each index maps to a # feature. Zero values in the tensor indicates feature being # non-existent. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [2, 0, 5, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` BAG_OF_FEATURES_SPARSE = 3 # The tensor is a list of binaries representing whether a feature exists # or not (1 indicates existence). # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#index_feature_mapping InputMetadata.index_feature_mapping} # must be provided for this encoding. For example: # ``` # input = [1, 0, 1, 0, 1] # index_feature_mapping = ["a", "b", "c", "d", "e"] # ``` INDICATOR = 4 # The tensor is encoded into a 1-dimensional array represented by an # encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [0.1, 0.2, 0.3, 0.4, 0.5] # ``` COMBINED_EMBEDDING = 5 # Select this encoding when the input tensor is encoded into a # 2-dimensional array represented by an encoded tensor. # {::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata#encoded_tensor_name InputMetadata.encoded_tensor_name} # must be provided for this encoding. The first dimension of the encoded # tensor's shape is the same as the input tensor's shape. For example: # ``` # input = ["This", "is", "a", "test", "."] # encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], # [0.2, 0.1, 0.4, 0.3, 0.5], # [0.5, 0.1, 0.3, 0.5, 0.4], # [0.5, 0.3, 0.1, 0.2, 0.4], # [0.4, 0.3, 0.2, 0.5, 0.1]] # ``` CONCAT_EMBEDDING = 6 end end |