Class: Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb
Overview
Visualization configurations for image explanation.
Defined Under Namespace
Modules: ColorMap, OverlayType, Polarity, Type
Instance Attribute Summary collapse
-
#clip_percent_lowerbound ⇒ ::Float
Excludes attributions below the specified percentile, from the highlighted areas.
-
#clip_percent_upperbound ⇒ ::Float
Excludes attributions above the specified percentile from the highlighted areas.
-
#color_map ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap
The color scheme used for the highlighted areas.
-
#overlay_type ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType
How the original image is displayed in the visualization.
-
#polarity ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity
Whether to only highlight pixels with positive contributions, negative or both.
-
#type ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type
Type of the image visualization.
Instance Attribute Details
#clip_percent_lowerbound ⇒ ::Float
Returns Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |
#clip_percent_upperbound ⇒ ::Float
Returns Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |
#color_map ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::ColorMap
Returns The color scheme used for the highlighted areas.
Defaults to PINK_GREEN for [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], which shows positive attributions in green and negative in pink.
Defaults to VIRIDIS for [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], which highlights the most influential regions in yellow and the least influential in blue.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |
#overlay_type ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::OverlayType
Returns How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |
#polarity ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Polarity
Returns Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |
#type ⇒ ::Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Visualization::Type
Returns Type of the image visualization. Only applicable to [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation_metadata.rb', line 235 class Visualization include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Type of the image visualization. Only applicable to # [Integrated Gradients # attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution]. module Type # Should not be used. TYPE_UNSPECIFIED = 0 # Shows which pixel contributed to the image prediction. PIXELS = 1 # Shows which region contributed to the image prediction by outlining # the region. OUTLINES = 2 end # Whether to only highlight pixels with positive contributions, negative # or both. Defaults to POSITIVE. module Polarity # Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0 # Highlights the pixels/outlines that were most influential to the # model's prediction. POSITIVE = 1 # Setting polarity to negative highlights areas that does not lead to # the models's current prediction. NEGATIVE = 2 # Shows both positive and negative attributions. BOTH = 3 end # The color scheme used for highlighting areas. module ColorMap # Should not be used. COLOR_MAP_UNSPECIFIED = 0 # Positive: green. Negative: pink. PINK_GREEN = 1 # Viridis color map: A perceptually uniform color mapping which is # easier to see by those with colorblindness and progresses from yellow # to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2 # Positive: red. Negative: red. RED = 3 # Positive: green. Negative: green. GREEN = 4 # Positive: green. Negative: red. RED_GREEN = 6 # PiYG palette. PINK_WHITE_GREEN = 5 end # How the original image is displayed in the visualization. module OverlayType # Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0 # No overlay. NONE = 1 # The attributions are shown on top of the original image. ORIGINAL = 2 # The attributions are shown on top of grayscaled version of the # original image. GRAYSCALE = 3 # The attributions are used as a mask to reveal predictive parts of # the image and hide the un-predictive parts. MASK_BLACK = 4 end end |