Class: Google::Cloud::AIPlatform::V1::StudySpec
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::StudySpec
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/study.rb
Overview
Represents specification of a Study.
Defined Under Namespace
Modules: Algorithm, MeasurementSelectionType, ObservationNoise Classes: ConvexAutomatedStoppingSpec, DecayCurveAutomatedStoppingSpec, MedianAutomatedStoppingSpec, MetricSpec, ParameterSpec, StudyStoppingConfig
Instance Attribute Summary collapse
-
#algorithm ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::Algorithm
The search algorithm specified for the Study.
-
#convex_automated_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ConvexAutomatedStoppingSpec
The automated early stopping spec using convex stopping rule.
-
#decay_curve_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::DecayCurveAutomatedStoppingSpec
The automated early stopping spec using decay curve rule.
-
#measurement_selection_type ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::MeasurementSelectionType
Describe which measurement selection type will be used.
-
#median_automated_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::MedianAutomatedStoppingSpec
The automated early stopping spec using median rule.
-
#metrics ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec>
Required.
-
#observation_noise ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ObservationNoise
The observation noise level of the study.
-
#parameters ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec>
Required.
-
#study_stopping_config ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::StudyStoppingConfig
Conditions for automated stopping of a Study.
Instance Attribute Details
#algorithm ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::Algorithm
Returns The search algorithm specified for the Study.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#convex_automated_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ConvexAutomatedStoppingSpec
Returns The automated early stopping spec using convex stopping rule.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#decay_curve_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::DecayCurveAutomatedStoppingSpec
Returns The automated early stopping spec using decay curve rule.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#measurement_selection_type ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::MeasurementSelectionType
Returns Describe which measurement selection type will be used.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#median_automated_stopping_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::MedianAutomatedStoppingSpec
Returns The automated early stopping spec using median rule.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#metrics ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec>
Returns Required. Metric specs for the Study.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#observation_noise ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ObservationNoise
Returns The observation noise level of the study. Currently only supported by the Vertex AI Vizier service. Not supported by HyperparameterTuningJob or TrainingPipeline.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#parameters ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec>
Returns Required. The set of parameters to tune.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |
#study_stopping_config ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::StudyStoppingConfig
Returns Conditions for automated stopping of a Study. Enable automated stopping by configuring at least one condition.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 250 class StudySpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces and must be # unique amongst all MetricSpecs. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. # @!attribute [rw] safety_config # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec::SafetyMetricConfig] # Used for safe search. In the case, the metric will be a safety # metric. You must provide a separate metric for objective metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Used in safe optimization to specify threshold levels and risk tolerance. # @!attribute [rw] safety_threshold # @return [::Float] # Safety threshold (boundary value between safe and unsafe). NOTE that if # you leave SafetyMetricConfig unset, a default value of 0 will be used. # @!attribute [rw] desired_min_safe_trials_fraction # @return [::Float] # Desired minimum fraction of safe trials (over total number of trials) # that should be targeted by the algorithm at any time during the # study (best effort). This should be between 0.0 and 1.0 and a value of # 0.0 means that there is no minimum and an algorithm proceeds without # targeting any specific fraction. A value of 1.0 means that the # algorithm attempts to only Suggest safe Trials. class SafetyMetricConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represents a single parameter to optimize. # @!attribute [rw] double_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec] # The value spec for a 'DOUBLE' parameter. # @!attribute [rw] integer_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec] # The value spec for an 'INTEGER' parameter. # @!attribute [rw] categorical_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec] # The value spec for a 'CATEGORICAL' parameter. # @!attribute [rw] discrete_value_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec] # The value spec for a 'DISCRETE' parameter. # @!attribute [rw] parameter_id # @return [::String] # Required. The ID of the parameter. Must not contain whitespaces and must # be unique amongst all ParameterSpecs. # @!attribute [rw] scale_type # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType] # How the parameter should be scaled. # Leave unset for `CATEGORICAL` parameters. # @!attribute [rw] conditional_parameter_specs # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>] # A conditional parameter node is active if the parameter's value matches # the conditional node's parent_value_condition. # # If two items in conditional_parameter_specs have the same name, they # must have disjoint parent_value_condition. class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end # The decay curve automated stopping rule builds a Gaussian Process # Regressor to predict the final objective value of a Trial based on the # already completed Trials and the intermediate measurements of the current # Trial. Early stopping is requested for the current Trial if there is very # low probability to exceed the optimal value found so far. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration} # is used as the x-axis of each Trials Decay Curve. Otherwise, # {::Google::Cloud::AIPlatform::V1::Measurement#step_count Measurement.step_count} # will be used as the x-axis. class DecayCurveAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The median automated stopping rule stops a pending Trial if the Trial's # best objective_value is strictly below the median 'performance' of all # completed Trials reported up to the Trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the Trial in each measurement. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # True if median automated stopping rule applies on # {::Google::Cloud::AIPlatform::V1::Measurement#elapsed_duration Measurement.elapsed_duration}. # It means that elapsed_duration field of latest measurement of current # Trial is used to compute median objective value for each completed # Trials. class MedianAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for ConvexAutomatedStoppingSpec. # When there are enough completed trials (configured by # min_measurement_count), for pending trials with enough measurements and # steps, the policy first computes an overestimate of the objective value at # max_num_steps according to the slope of the incomplete objective value # curve. No prediction can be made if the curve is completely flat. If the # overestimation is worse than the best objective value of the completed # trials, this pending trial will be early-stopped, but a last measurement # will be added to the pending trial with max_num_steps and predicted # objective value from the autoregression model. # @!attribute [rw] max_step_count # @return [::Integer] # Steps used in predicting the final objective for early stopped trials. In # general, it's set to be the same as the defined steps in training / # tuning. If not defined, it will learn it from the completed trials. When # use_steps is false, this field is set to the maximum elapsed seconds. # @!attribute [rw] min_step_count # @return [::Integer] # Minimum number of steps for a trial to complete. Trials which do not have # a measurement with step_count > min_step_count won't be considered for # early stopping. It's ok to set it to 0, and a trial can be early stopped # at any stage. By default, min_step_count is set to be one-tenth of the # max_step_count. # When use_elapsed_duration is true, this field is set to the minimum # elapsed seconds. # @!attribute [rw] min_measurement_count # @return [::Integer] # The minimal number of measurements in a Trial. Early-stopping checks # will not trigger if less than min_measurement_count+1 completed trials or # pending trials with less than min_measurement_count measurements. If not # defined, the default value is 5. # @!attribute [rw] learning_rate_parameter_name # @return [::String] # The hyper-parameter name used in the tuning job that stands for learning # rate. Leave it blank if learning rate is not in a parameter in tuning. # The learning_rate is used to estimate the objective value of the ongoing # trial. # @!attribute [rw] use_elapsed_duration # @return [::Boolean] # This bool determines whether or not the rule is applied based on # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping # decision is made according to the predicted objective values according to # the target steps. If use_elapsed_duration==true, elapsed_secs is used # instead of steps. Also, in this case, the parameters max_num_steps and # min_num_steps are overloaded to contain max_elapsed_seconds and # min_elapsed_seconds. # @!attribute [rw] update_all_stopped_trials # @return [::Boolean] # ConvexAutomatedStoppingSpec by default only updates the trials that needs # to be early stopped using a newly trained auto-regressive model. When # this flag is set to True, all stopped trials from the beginning are # potentially updated in terms of their `final_measurement`. Also, note # that the training logic of autoregressive models is different in this # case. Enabling this option has shown better results and this may be the # default option in the future. class ConvexAutomatedStoppingSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The configuration (stopping conditions) for automated stopping of a Study. # Conditions include trial budgets, time budgets, and convergence detection. # @!attribute [rw] should_stop_asap # @return [::Google::Protobuf::BoolValue] # If true, a Study enters STOPPING_ASAP whenever it would normally enters # STOPPING state. # # The bottom line is: set to true if you want to interrupt on-going # evaluations of Trials as soon as the study stopping condition is met. # (Please see Study.State documentation for the source of truth). # @!attribute [rw] minimum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # Each "stopping rule" in this proto specifies an "if" condition. Before # Vizier would generate a new suggestion, it first checks each specified # stopping rule, from top to bottom in this list. # Note that the first few rules (e.g. minimum_runtime_constraint, # min_num_trials) will prevent other stopping rules from being evaluated # until they are met. For example, setting `min_num_trials=5` and # `always_stop_after= 1 hour` means that the Study will ONLY stop after it # has 5 COMPLETED trials, even if more than an hour has passed since its # creation. It follows the first applicable rule (whose "if" condition is # satisfied) to make a stopping decision. If none of the specified rules # are applicable, then Vizier decides that the study should not stop. # If Vizier decides that the study should stop, the study enters # STOPPING state (or STOPPING_ASAP if should_stop_asap = true). # IMPORTANT: The automatic study state transition happens precisely as # described above; that is, deleting trials or updating StudyConfig NEVER # automatically moves the study state back to ACTIVE. If you want to # _resume_ a Study that was stopped, 1) change the stopping conditions if # necessary, 2) activate the study, and then 3) ask for suggestions. # If the specified time or duration has not passed, do not stop the # study. # @!attribute [rw] maximum_runtime_constraint # @return [::Google::Cloud::AIPlatform::V1::StudyTimeConstraint] # If the specified time or duration has passed, stop the study. # @!attribute [rw] min_num_trials # @return [::Google::Protobuf::Int32Value] # If there are fewer than this many COMPLETED trials, do not stop the # study. # @!attribute [rw] max_num_trials # @return [::Google::Protobuf::Int32Value] # If there are more than this many trials, stop the study. # @!attribute [rw] max_num_trials_no_progress # @return [::Google::Protobuf::Int32Value] # If the objective value has not improved for this many consecutive # trials, stop the study. # # WARNING: Effective only for single-objective studies. # @!attribute [rw] max_duration_no_progress # @return [::Google::Protobuf::Duration] # If the objective value has not improved for this much time, stop the # study. # # WARNING: Effective only for single-objective studies. class StudyStoppingConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available search algorithms for the Study. module Algorithm # The default algorithm used by Vertex AI for [hyperparameter # tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) # and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0 # Simple grid search within the feasible space. To use grid search, # all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2 # Simple random search within the feasible space. RANDOM_SEARCH = 3 end # Describes the noise level of the repeated observations. # # "Noisy" means that the repeated observations with the same Trial parameters # may lead to different metric evaluations. module ObservationNoise # The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0 # Vertex AI assumes that the objective function is (nearly) # perfectly reproducible, and will never repeat the same Trial # parameters. LOW = 1 # Vertex AI will estimate the amount of noise in metric # evaluations, it may repeat the same Trial parameters more than once. HIGH = 2 end # This indicates which measurement to use if/when the service automatically # selects the final measurement from previously reported intermediate # measurements. Choose this based on two considerations: # A) Do you expect your measurements to monotonically improve? # If so, choose LAST_MEASUREMENT. On the other hand, if you're in a # situation where your system can "over-train" and you expect the # performance to get better for a while but then start declining, # choose BEST_MEASUREMENT. # B) Are your measurements significantly noisy and/or irreproducible? # If so, BEST_MEASUREMENT will tend to be over-optimistic, and it # may be better to choose LAST_MEASUREMENT. # If both or neither of (A) and (B) apply, it doesn't matter which # selection type is chosen. module MeasurementSelectionType # Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0 # Use the last measurement reported. LAST_MEASUREMENT = 1 # Use the best measurement reported. BEST_MEASUREMENT = 2 end end |