Class: Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/study.rb
Overview
Represents a single parameter to optimize.
Defined Under Namespace
Modules: ScaleType Classes: CategoricalValueSpec, ConditionalParameterSpec, DiscreteValueSpec, DoubleValueSpec, IntegerValueSpec
Instance Attribute Summary collapse
-
#categorical_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec
The value spec for a 'CATEGORICAL' parameter.
-
#conditional_parameter_specs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>
A conditional parameter node is active if the parameter's value matches the conditional node's parent_value_condition.
-
#discrete_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec
The value spec for a 'DISCRETE' parameter.
-
#double_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec
The value spec for a 'DOUBLE' parameter.
-
#integer_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec
The value spec for an 'INTEGER' parameter.
-
#parameter_id ⇒ ::String
Required.
-
#scale_type ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType
How the parameter should be scaled.
Instance Attribute Details
#categorical_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec
Returns The value spec for a 'CATEGORICAL' parameter.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#conditional_parameter_specs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>
Returns A conditional parameter node is active if the parameter's value matches the conditional node's parent_value_condition.
If two items in conditional_parameter_specs have the same name, they must have disjoint parent_value_condition.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#discrete_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec
Returns The value spec for a 'DISCRETE' parameter.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#double_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec
Returns The value spec for a 'DOUBLE' parameter.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#integer_value_spec ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec
Returns The value spec for an 'INTEGER' parameter.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#parameter_id ⇒ ::String
Returns Required. The ID of the parameter. Must not contain whitespaces and must be unique amongst all ParameterSpecs.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |
#scale_type ⇒ ::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType
Returns How the parameter should be scaled.
Leave unset for CATEGORICAL
parameters.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 329 class ParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Value specification for a parameter in `DOUBLE` type. # @!attribute [rw] min_value # @return [::Float] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Float] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DOUBLE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DoubleValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `INTEGER` type. # @!attribute [rw] min_value # @return [::Integer] # Required. Inclusive minimum value of the parameter. # @!attribute [rw] max_value # @return [::Integer] # Required. Inclusive maximum value of the parameter. # @!attribute [rw] default_value # @return [::Integer] # A default value for an `INTEGER` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class IntegerValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `CATEGORICAL` type. # @!attribute [rw] values # @return [::Array<::String>] # Required. The list of possible categories. # @!attribute [rw] default_value # @return [::String] # A default value for a `CATEGORICAL` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class CategoricalValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Value specification for a parameter in `DISCRETE` type. # @!attribute [rw] values # @return [::Array<::Float>] # Required. A list of possible values. # The list should be in increasing order and at least 1e-10 apart. # For instance, this parameter might have possible settings of 1.5, 2.5, # and 4.0. This list should not contain more than 1,000 values. # @!attribute [rw] default_value # @return [::Float] # A default value for a `DISCRETE` parameter that is assumed to be a # relatively good starting point. Unset value signals that there is no # offered starting point. It automatically rounds to the # nearest feasible discrete point. # # Currently only supported by the Vertex AI Vizier service. Not supported # by HyperparameterTuningJob or TrainingPipeline. class DiscreteValueSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents a parameter spec with condition from its parent parameter. # @!attribute [rw] parent_discrete_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition] # The spec for matching values from a parent parameter of # `DISCRETE` type. # @!attribute [rw] parent_int_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition] # The spec for matching values from a parent parameter of `INTEGER` # type. # @!attribute [rw] parent_categorical_values # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition] # The spec for matching values from a parent parameter of # `CATEGORICAL` type. # @!attribute [rw] parameter_spec # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec] # Required. The spec for a conditional parameter. class ConditionalParameterSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents the spec to match discrete values from parent parameter. # @!attribute [rw] values # @return [::Array<::Float>] # Required. Matches values of the parent parameter of 'DISCRETE' type. # All values must exist in `discrete_value_spec` of parent parameter. # # The Epsilon of the value matching is 1e-10. class DiscreteValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match integer values from parent parameter. # @!attribute [rw] values # @return [::Array<::Integer>] # Required. Matches values of the parent parameter of 'INTEGER' type. # All values must lie in `integer_value_spec` of parent parameter. class IntValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represents the spec to match categorical values from parent parameter. # @!attribute [rw] values # @return [::Array<::String>] # Required. Matches values of the parent parameter of 'CATEGORICAL' # type. All values must exist in `categorical_value_spec` of parent # parameter. class CategoricalValueCondition include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The type of scaling that should be applied to this parameter. module ScaleType # By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0 # Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1 # Scales the feasible space logarithmically to (0, 1). The entire # feasible space must be strictly positive. UNIT_LOG_SCALE = 2 # Scales the feasible space "reverse" logarithmically to (0, 1). The # result is that values close to the top of the feasible space are spread # out more than points near the bottom. The entire feasible space must be # strictly positive. UNIT_REVERSE_LOG_SCALE = 3 end end |