As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Types for Google Cloud Aiplatform V1 Schema Trainingjob Definition v1 API

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Image Classification Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs

metadata

The metadata information.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs.ModelType

base_model_id

The ID of the base model. If it is specified, the new model will be trained based on the base model. Otherwise, the new model will be trained from scratch. The base model must be in the same Project and Location as the new Model to train, and have the same modelType.

Type:

str

budget_milli_node_hours

The training budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The actual metadata.costMilliNodeHours will be equal or less than this value. If further model training ceases to provide any improvements, it will stop without using the full budget and the metadata.successfulStopReason will be model-converged. Note, node_hour = actual_hour * number_of_nodes_involved. For modelType cloud(default), the budget must be between 8,000 and 800,000 milli node hours, inclusive. The default value is 192,000 which represents one day in wall time, considering 8 nodes are used. For model types mobile-tf-low-latency-1, mobile-tf-versatile-1, mobile-tf-high-accuracy-1, the training budget must be between 1,000 and 100,000 milli node hours, inclusive. The default value is 24,000 which represents one day in wall time on a single node that is used.

Type:

int

disable_early_stopping

Use the entire training budget. This disables the early stopping feature. When false the early stopping feature is enabled, which means that AutoML Image Classification might stop training before the entire training budget has been used.

Type:

bool

multi_label

If false, a single-label (multi-class) Model will be trained (i.e. assuming that for each image just up to one annotation may be applicable). If true, a multi-label Model will be trained (i.e. assuming that for each image multiple annotations may be applicable).

Type:

bool

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD (1):

A Model best tailored to be used within Google Cloud, and which cannot be exported. Default.

MOBILE_TF_LOW_LATENCY_1 (2):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.

MOBILE_TF_VERSATILE_1 (3):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device with afterwards.

MOBILE_TF_HIGH_ACCURACY_1 (4):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device afterwards. Expected to have a higher latency, but should also have a higher prediction quality than other mobile models.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

cost_milli_node_hours

The actual training cost of creating this model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed inputs.budgetMilliNodeHours.

Type:

int

successful_stop_reason

For successful job completions, this is the reason why the job has finished.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata.SuccessfulStopReason

class SuccessfulStopReason(value)[source]

Bases: Enum

Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0):

Should not be set.

BUDGET_REACHED (1):

The inputs.budgetMilliNodeHours had been reached.

MODEL_CONVERGED (2):

Further training of the Model ceased to increase its quality, since it already has converged.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetection(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Image Object Detection Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs

metadata

The metadata information

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs.ModelType

budget_milli_node_hours

The training budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The actual metadata.costMilliNodeHours will be equal or less than this value. If further model training ceases to provide any improvements, it will stop without using the full budget and the metadata.successfulStopReason will be model-converged. Note, node_hour = actual_hour * number_of_nodes_involved. For modelType cloud(default), the budget must be between 20,000 and 900,000 milli node hours, inclusive. The default value is 216,000 which represents one day in wall time, considering 9 nodes are used. For model types mobile-tf-low-latency-1, mobile-tf-versatile-1, mobile-tf-high-accuracy-1 the training budget must be between 1,000 and 100,000 milli node hours, inclusive. The default value is 24,000 which represents one day in wall time on a single node that is used.

Type:

int

disable_early_stopping

Use the entire training budget. This disables the early stopping feature. When false the early stopping feature is enabled, which means that AutoML Image Object Detection might stop training before the entire training budget has been used.

Type:

bool

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD_HIGH_ACCURACY_1 (1):

A model best tailored to be used within Google Cloud, and which cannot be exported. Expected to have a higher latency, but should also have a higher prediction quality than other cloud models.

CLOUD_LOW_LATENCY_1 (2):

A model best tailored to be used within Google Cloud, and which cannot be exported. Expected to have a low latency, but may have lower prediction quality than other cloud models.

MOBILE_TF_LOW_LATENCY_1 (3):

A model that, in addition to being available within Google Cloud can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.

MOBILE_TF_VERSATILE_1 (4):

A model that, in addition to being available within Google Cloud can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards.

MOBILE_TF_HIGH_ACCURACY_1 (5):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards. Expected to have a higher latency, but should also have a higher prediction quality than other mobile models.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

cost_milli_node_hours

The actual training cost of creating this model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed inputs.budgetMilliNodeHours.

Type:

int

successful_stop_reason

For successful job completions, this is the reason why the job has finished.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata.SuccessfulStopReason

class SuccessfulStopReason(value)[source]

Bases: Enum

Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0):

Should not be set.

BUDGET_REACHED (1):

The inputs.budgetMilliNodeHours had been reached.

MODEL_CONVERGED (2):

Further training of the Model ceased to increase its quality, since it already has converged.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Image Segmentation Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs

metadata

The metadata information.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs.ModelType

budget_milli_node_hours

The training budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The actual metadata.costMilliNodeHours will be equal or less than this value. If further model training ceases to provide any improvements, it will stop without using the full budget and the metadata.successfulStopReason will be model-converged. Note, node_hour = actual_hour * number_of_nodes_involved. Or actaul_wall_clock_hours = train_budget_milli_node_hours / (number_of_nodes_involved * 1000) For modelType cloud-high-accuracy-1(default), the budget must be between 20,000 and 2,000,000 milli node hours, inclusive. The default value is 192,000 which represents one day in wall time (1000 milli * 24 hours * 8 nodes).

Type:

int

base_model_id

The ID of the base model. If it is specified, the new model will be trained based on the base model. Otherwise, the new model will be trained from scratch. The base model must be in the same Project and Location as the new Model to train, and have the same modelType.

Type:

str

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD_HIGH_ACCURACY_1 (1):

A model to be used via prediction calls to uCAIP API. Expected to have a higher latency, but should also have a higher prediction quality than other models.

CLOUD_LOW_ACCURACY_1 (2):

A model to be used via prediction calls to uCAIP API. Expected to have a lower latency but relatively lower prediction quality.

MOBILE_TF_LOW_LATENCY_1 (3):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow model and used on a mobile or edge device afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

cost_milli_node_hours

The actual training cost of creating this model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed inputs.budgetMilliNodeHours.

Type:

int

successful_stop_reason

For successful job completions, this is the reason why the job has finished.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata.SuccessfulStopReason

class SuccessfulStopReason(value)[source]

Bases: Enum

Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0):

Should not be set.

BUDGET_REACHED (1):

The inputs.budgetMilliNodeHours had been reached.

MODEL_CONVERGED (2):

Further training of the Model ceased to increase its quality, since it already has converged.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTables(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Tables Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs

metadata

The metadata information.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesMetadata

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

optimization_objective_recall_value

Required when optimization_objective is “maximize-precision-at-recall”. Must be between 0 and 1, inclusive.

This field is a member of oneof additional_optimization_objective_config.

Type:

float

optimization_objective_precision_value

Required when optimization_objective is “maximize-recall-at-precision”. Must be between 0 and 1, inclusive.

This field is a member of oneof additional_optimization_objective_config.

Type:

float

prediction_type

The type of prediction the Model is to produce. “classification” - Predict one out of multiple target values is picked for each row.

“regression” - Predict a value based on its

relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.

Type:

str

target_column

The column name of the target column that the model is to predict.

Type:

str

transformations

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using “.” as the delimiter.

Type:

MutableSequence[google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation]

optimization_objective

Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set.

The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used.

classification (binary):

“maximize-au-roc” (default) - Maximize the

area under the receiver operating characteristic (ROC) curve. “minimize-log-loss” - Minimize log loss.

“maximize-au-prc” - Maximize the area under

the precision-recall curve. “maximize-precision-at-recall” - Maximize precision for a specified recall value. “maximize-recall-at-precision” - Maximize recall for a specified precision value.

classification (multi-class):

“minimize-log-loss” (default) - Minimize log

loss.

regression:

“minimize-rmse” (default) - Minimize

root-mean-squared error (RMSE). “minimize-mae” - Minimize mean-absolute error (MAE). “minimize-rmsle” - Minimize root-mean-squared log error (RMSLE).

Type:

str

train_budget_milli_node_hours

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour.

The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend’s discretion. This especially may happen when further model training ceases to provide any improvements.

If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won’t be attempted and will error.

The train budget must be between 1,000 and 72,000 milli node hours, inclusive.

Type:

int

disable_early_stopping

Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.

Type:

bool

weight_column_name

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.

Type:

str

export_evaluated_data_items_config

Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.ExportEvaluatedDataItemsConfig

additional_experiments

Additional experiment flags for the Tables training pipeline.

Type:

MutableSequence[str]

class Transformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

auto

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.AutoTransformation

numeric

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.NumericTransformation

categorical

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.CategoricalTransformation

timestamp

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TimestampTransformation

text

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TextTransformation

repeated_numeric

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.NumericArrayTransformation

repeated_categorical

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.CategoricalArrayTransformation

repeated_text

This field is a member of oneof transformation_detail.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TextArrayTransformation

class AutoTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Training pipeline will infer the proper transformation based on the statistic of dataset.

column_name
Type:

str

class CategoricalArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Treats the column as categorical array and performs following transformation functions.

  • For each element in the array, convert the category name to a dictionary lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.

  • Empty arrays treated as an embedding of zeroes.

column_name
Type:

str

class CategoricalTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Training pipeline will perform following transformation functions.

  • The categorical string as is–no change to case, punctuation, spelling, tense, and so on.

  • Convert the category name to a dictionary lookup index and generate an embedding for each index.

  • Categories that appear less than 5 times in the training dataset are treated as the “unknown” category. The “unknown” category gets its own special lookup index and resulting embedding.

column_name
Type:

str

class NumericArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Treats the column as numerical array and performs following transformation functions.

  • All transformations for Numerical types applied to the average of the all elements.

  • The average of empty arrays is treated as zero.

column_name
Type:

str

invalid_values_allowed

If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.

Type:

bool

class NumericTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Training pipeline will perform following transformation functions.

  • The value converted to float32.

  • The z_score of the value.

  • log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.

  • z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.

  • A boolean value that indicates whether the value is valid.

column_name
Type:

str

invalid_values_allowed

If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.

Type:

bool

class TextArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Treats the column as text array and performs following transformation functions.

  • Concatenate all text values in the array into a single text value using a space (” “) as a delimiter, and then treat the result as a single text value. Apply the transformations for Text columns.

  • Empty arrays treated as an empty text.

column_name
Type:

str

class TextTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Training pipeline will perform following transformation functions.

  • The text as is–no change to case, punctuation, spelling, tense, and so on.

  • Tokenize text to words. Convert each words to a dictionary lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.

  • Tokenization is based on unicode script boundaries.

  • Missing values get their own lookup index and resulting embedding.

  • Stop-words receive no special treatment and are not removed.

column_name
Type:

str

class TimestampTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Training pipeline will perform following transformation functions.

  • Apply the transformation functions for Numerical columns.

  • Determine the year, month, day,and weekday. Treat each value from the

  • timestamp as a Categorical column.

  • Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed.

column_name
Type:

str

time_format

The format in which that time field is expressed. The time_format must either be one of:

  • unix-seconds

  • unix-milliseconds

  • unix-microseconds

  • unix-nanoseconds (for respectively number of seconds, milliseconds, microseconds and nanoseconds since start of the Unix epoch); or be written in strftime syntax. If time_format is not set, then the default format is RFC 3339 date-time format, where time-offset = "Z" (e.g. 1985-04-12T23:20:50.52Z)

Type:

str

invalid_values_allowed

If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.

Type:

bool

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Model metadata specific to AutoML Tables.

train_cost_milli_node_hours

Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.

Type:

int

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Text Classification Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassificationInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

multi_label
Type:

bool

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextExtraction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Text Extraction Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextExtractionInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentiment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Text Sentiment Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentimentInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentimentInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

sentiment_max

A sentiment is expressed as an integer ordinal, where higher value means a more positive sentiment. The range of sentiments that will be used is between 0 and sentimentMax (inclusive on both ends), and all the values in the range must be represented in the dataset before a model can be created. Only the Annotations with this sentimentMax will be used for training. sentimentMax value must be between 1 and 10 (inclusive).

Type:

int

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognition(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Video Action Recognition Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs.ModelType

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD (1):

A model best tailored to be used within Google Cloud, and which c annot be exported. Default.

MOBILE_VERSATILE_1 (2):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.

MOBILE_JETSON_VERSATILE_1 (3):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) to a Jetson device afterwards.

MOBILE_CORAL_VERSATILE_1 (4):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a Coral device afterwards.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Video Classification Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs.ModelType

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD (1):

A model best tailored to be used within Google Cloud, and which cannot be exported. Default.

MOBILE_VERSATILE_1 (2):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.

MOBILE_JETSON_VERSATILE_1 (3):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) to a Jetson device afterwards.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTracking(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

A TrainingJob that trains and uploads an AutoML Video ObjectTracking Model.

inputs

The input parameters of this TrainingJob.

Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

model_type
Type:

google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs.ModelType

class ModelType(value)[source]

Bases: Enum

Values:
MODEL_TYPE_UNSPECIFIED (0):

Should not be set.

CLOUD (1):

A model best tailored to be used within Google Cloud, and which c annot be exported. Default.

MOBILE_VERSATILE_1 (2):

A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.

MOBILE_CORAL_VERSATILE_1 (3):

A versatile model that is meant to be exported (see ModelService.ExportModel) and used on a Google Coral device.

MOBILE_CORAL_LOW_LATENCY_1 (4):

A model that trades off quality for low latency, to be exported (see ModelService.ExportModel) and used on a Google Coral device.

MOBILE_JETSON_VERSATILE_1 (5):

A versatile model that is meant to be exported (see ModelService.ExportModel) and used on an NVIDIA Jetson device.

MOBILE_JETSON_LOW_LATENCY_1 (6):

A model that trades off quality for low latency, to be exported (see ModelService.ExportModel) and used on an NVIDIA Jetson device.

class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.ExportEvaluatedDataItemsConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]

Bases: Message

Configuration for exporting test set predictions to a BigQuery table.

destination_bigquery_uri

URI of desired destination BigQuery table. Expected format: bq://<project_id>:<dataset_id>:

If not specified, then results are exported to the following auto-created BigQuery table: <project_id>:export_evaluated_examples_<model_name>_<yyyy_MM_dd’T’HH_mm_ss_SSS’Z’>.evaluated_examples

Type:

str

override_existing_table

If true and an export destination is specified, then the contents of the destination are overwritten. Otherwise, if the export destination already exists, then the export operation fails.

Type:

bool