DatasetService¶
- class google.cloud.aiplatform_v1.services.dataset_service.DatasetServiceAsyncClient(*, credentials: ~typing.Optional[~google.auth.credentials.Credentials] = None, transport: ~typing.Optional[~typing.Union[str, ~google.cloud.aiplatform_v1.services.dataset_service.transports.base.DatasetServiceTransport, ~typing.Callable[[...], ~google.cloud.aiplatform_v1.services.dataset_service.transports.base.DatasetServiceTransport]]] = 'grpc_asyncio', client_options: ~typing.Optional[~google.api_core.client_options.ClientOptions] = None, client_info: ~google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
The service that manages Vertex AI Dataset and its child resources.
Instantiates the dataset service async client.
- Parameters:
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,DatasetServiceTransport,Callable[..., DatasetServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the DatasetServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises:
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- static annotation_path(project: str, location: str, dataset: str, data_item: str, annotation: str) str ¶
Returns a fully-qualified annotation string.
- static annotation_spec_path(project: str, location: str, dataset: str, annotation_spec: str) str ¶
Returns a fully-qualified annotation_spec string.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns:
The API endpoint used by the client instance.
- Return type:
- async cancel_operation(request: Optional[CancelOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Starts asynchronous cancellation on a long-running operation.
The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
CancelOperationRequest
) – The request object. Request message for CancelOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- async create_dataset(request: Optional[Union[CreateDatasetRequest, dict]] = None, *, parent: Optional[str] = None, dataset: Optional[Dataset] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Creates a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_dataset(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) dataset = aiplatform_v1.Dataset() dataset.display_name = "display_name_value" dataset.metadata_schema_uri = "metadata_schema_uri_value" dataset.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.CreateDatasetRequest( parent="parent_value", dataset=dataset, ) # Make the request operation = client.create_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateDatasetRequest, dict]]) – The request object. Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
parent (
str
) –Required. The resource name of the Location to create the Dataset in. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset (
google.cloud.aiplatform_v1.types.Dataset
) – Required. The Dataset to create. This corresponds to thedataset
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.Dataset
A collection of DataItems and Annotations on them.- Return type:
- async create_dataset_version(request: Optional[Union[CreateDatasetVersionRequest, dict]] = None, *, parent: Optional[str] = None, dataset_version: Optional[DatasetVersion] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Create a version from a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) dataset_version = aiplatform_v1.DatasetVersion() dataset_version.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.CreateDatasetVersionRequest( parent="parent_value", dataset_version=dataset_version, ) # Make the request operation = client.create_dataset_version(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateDatasetVersionRequest, dict]]) – The request object. Request message for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.CreateDatasetVersion].
parent (
str
) –Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset_version (
google.cloud.aiplatform_v1.types.DatasetVersion
) –Required. The version to be created. The same CMEK policies with the original Dataset will be applied the dataset version. So here we don’t need to specify the EncryptionSpecType here.
This corresponds to the
dataset_version
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.DatasetVersion
Describes the dataset version.- Return type:
- static data_item_path(project: str, location: str, dataset: str, data_item: str) str ¶
Returns a fully-qualified data_item string.
- static dataset_path(project: str, location: str, dataset: str) str ¶
Returns a fully-qualified dataset string.
- static dataset_version_path(project: str, location: str, dataset: str, dataset_version: str) str ¶
Returns a fully-qualified dataset_version string.
- async delete_dataset(request: Optional[Union[DeleteDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_dataset(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteDatasetRequest( name="name_value", ) # Make the request operation = client.delete_dataset(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteDatasetRequest, dict]]) – The request object. Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1.DatasetService.DeleteDataset].
name (
str
) –Required. The resource name of the Dataset to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_dataset_version(request: Optional[Union[DeleteDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes a Dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteDatasetVersionRequest( name="name_value", ) # Make the request operation = client.delete_dataset_version(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteDatasetVersionRequest, dict]]) – The request object. Request message for [DatasetService.DeleteDatasetVersion][google.cloud.aiplatform.v1.DatasetService.DeleteDatasetVersion].
name (
str
) –Required. The resource name of the Dataset version to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_operation(request: Optional[DeleteOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a long-running operation.
This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
DeleteOperationRequest
) – The request object. Request message for DeleteOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- async delete_saved_query(request: Optional[Union[DeleteSavedQueryRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes a SavedQuery.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_saved_query(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteSavedQueryRequest( name="name_value", ) # Make the request operation = client.delete_saved_query(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteSavedQueryRequest, dict]]) – The request object. Request message for [DatasetService.DeleteSavedQuery][google.cloud.aiplatform.v1.DatasetService.DeleteSavedQuery].
name (
str
) –Required. The resource name of the SavedQuery to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/savedQueries/{saved_query}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async export_data(request: Optional[Union[ExportDataRequest, dict]] = None, *, name: Optional[str] = None, export_config: Optional[ExportDataConfig] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Exports data from a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_export_data(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) export_config = aiplatform_v1.ExportDataConfig() export_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = aiplatform_v1.ExportDataRequest( name="name_value", export_config=export_config, ) # Make the request operation = client.export_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ExportDataRequest, dict]]) – The request object. Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
name (
str
) –Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.export_config (
google.cloud.aiplatform_v1.types.ExportDataConfig
) –Required. The desired output location.
This corresponds to the
export_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.ExportDataResponse
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
- The result type for the operation will be
- Return type:
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters:
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- async get_annotation_spec(request: Optional[Union[GetAnnotationSpecRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AnnotationSpec [source]¶
Gets an AnnotationSpec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_annotation_spec(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetAnnotationSpecRequest( name="name_value", ) # Make the request response = await client.get_annotation_spec(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetAnnotationSpecRequest, dict]]) – The request object. Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1.DatasetService.GetAnnotationSpec].
name (
str
) –Required. The name of the AnnotationSpec resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}/annotationSpecs/{annotation_spec}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Identifies a concept with which DataItems may be annotated with.
- Return type:
- async get_dataset(request: Optional[Union[GetDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Dataset [source]¶
Gets a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_dataset(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetDatasetRequest( name="name_value", ) # Make the request response = await client.get_dataset(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetDatasetRequest, dict]]) – The request object. Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1.DatasetService.GetDataset]. Next ID: 4
name (
str
) –Required. The name of the Dataset resource.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A collection of DataItems and Annotations on them.
- Return type:
- async get_dataset_version(request: Optional[Union[GetDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) DatasetVersion [source]¶
Gets a Dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetDatasetVersionRequest( name="name_value", ) # Make the request response = await client.get_dataset_version(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetDatasetVersionRequest, dict]]) – The request object. Request message for [DatasetService.GetDatasetVersion][google.cloud.aiplatform.v1.DatasetService.GetDatasetVersion]. Next ID: 4
name (
str
) –Required. The resource name of the Dataset version to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Describes the dataset version.
- Return type:
- async get_iam_policy(request: Optional[GetIamPolicyRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Gets the IAM access control policy for a function.
Returns an empty policy if the function exists and does not have a policy set.
- Parameters:
request (
GetIamPolicyRequest
) – The request object. Request message for GetIamPolicy method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- async get_location(request: Optional[GetLocationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Location [source]¶
Gets information about a location.
- Parameters:
request (
GetLocationRequest
) – The request object. Request message for GetLocation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Location object.
- Return type:
Location
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters:
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns:
- returns the API endpoint and the
client cert source to use.
- Return type:
- Raises:
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- async get_operation(request: Optional[GetOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters:
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- classmethod get_transport_class(label: Optional[str] = None) Type[DatasetServiceTransport] ¶
Returns an appropriate transport class.
- Parameters:
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns:
The transport class to use.
- async import_data(request: Optional[Union[ImportDataRequest, dict]] = None, *, name: Optional[str] = None, import_configs: Optional[MutableSequence[ImportDataConfig]] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Imports data into a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_import_data(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) import_configs = aiplatform_v1.ImportDataConfig() import_configs.gcs_source.uris = ['uris_value1', 'uris_value2'] import_configs.import_schema_uri = "import_schema_uri_value" request = aiplatform_v1.ImportDataRequest( name="name_value", import_configs=import_configs, ) # Make the request operation = client.import_data(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ImportDataRequest, dict]]) – The request object. Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
name (
str
) –Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.import_configs (
MutableSequence[google.cloud.aiplatform_v1.types.ImportDataConfig]
) –Required. The desired input locations. The contents of all input locations will be imported in one batch.
This corresponds to the
import_configs
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.ImportDataResponse
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
- The result type for the operation will be
- Return type:
- async list_annotations(request: Optional[Union[ListAnnotationsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListAnnotationsAsyncPager [source]¶
Lists Annotations belongs to a dataitem This RPC is only available in InternalDatasetService. It is only used for exporting conversation data to CCAI Insights.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_annotations(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListAnnotationsRequest( parent="parent_value", ) # Make the request page_result = client.list_annotations(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListAnnotationsRequest, dict]]) – The request object. Request message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
parent (
str
) –Required. The resource name of the DataItem to list Annotations from. Format:
projects/{project}/locations/{location}/datasets/{dataset}/dataItems/{data_item}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListAnnotationsAsyncPager
- async list_data_items(request: Optional[Union[ListDataItemsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDataItemsAsyncPager [source]¶
Lists DataItems in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_data_items(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListDataItemsRequest( parent="parent_value", ) # Make the request page_result = client.list_data_items(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListDataItemsRequest, dict]]) – The request object. Request message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
parent (
str
) –Required. The resource name of the Dataset to list DataItems from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDataItemsAsyncPager
- async list_dataset_versions(request: Optional[Union[ListDatasetVersionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDatasetVersionsAsyncPager [source]¶
Lists DatasetVersions in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_dataset_versions(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListDatasetVersionsRequest( parent="parent_value", ) # Make the request page_result = client.list_dataset_versions(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListDatasetVersionsRequest, dict]]) – The request object. Request message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
parent (
str
) –Required. The resource name of the Dataset to list DatasetVersions from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetVersionsAsyncPager
- async list_datasets(request: Optional[Union[ListDatasetsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDatasetsAsyncPager [source]¶
Lists Datasets in a Location.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_datasets(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListDatasetsRequest( parent="parent_value", ) # Make the request page_result = client.list_datasets(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListDatasetsRequest, dict]]) – The request object. Request message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
parent (
str
) –Required. The name of the Dataset’s parent resource. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetsAsyncPager
- async list_locations(request: Optional[ListLocationsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListLocationsResponse [source]¶
Lists information about the supported locations for this service.
- Parameters:
request (
ListLocationsRequest
) – The request object. Request message for ListLocations method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListLocations
method.- Return type:
ListLocationsResponse
- async list_operations(request: Optional[ListOperationsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters:
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListOperations
method.- Return type:
ListOperationsResponse
- async list_saved_queries(request: Optional[Union[ListSavedQueriesRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListSavedQueriesAsyncPager [source]¶
Lists SavedQueries in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_saved_queries(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListSavedQueriesRequest( parent="parent_value", ) # Make the request page_result = client.list_saved_queries(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListSavedQueriesRequest, dict]]) – The request object. Request message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
parent (
str
) –Required. The resource name of the Dataset to list SavedQueries from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListSavedQueriesAsyncPager
- static parse_annotation_path(path: str) Dict[str, str] ¶
Parses a annotation path into its component segments.
- static parse_annotation_spec_path(path: str) Dict[str, str] ¶
Parses a annotation_spec path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_data_item_path(path: str) Dict[str, str] ¶
Parses a data_item path into its component segments.
- static parse_dataset_path(path: str) Dict[str, str] ¶
Parses a dataset path into its component segments.
- static parse_dataset_version_path(path: str) Dict[str, str] ¶
Parses a dataset_version path into its component segments.
- static parse_saved_query_path(path: str) Dict[str, str] ¶
Parses a saved_query path into its component segments.
- async restore_dataset_version(request: Optional[Union[RestoreDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Restores a dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_restore_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.RestoreDatasetVersionRequest( name="name_value", ) # Make the request operation = client.restore_dataset_version(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.RestoreDatasetVersionRequest, dict]]) – The request object. Request message for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1.DatasetService.RestoreDatasetVersion].
name (
str
) –Required. The name of the DatasetVersion resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.DatasetVersion
Describes the dataset version.- Return type:
- static saved_query_path(project: str, location: str, dataset: str, saved_query: str) str ¶
Returns a fully-qualified saved_query string.
- async search_data_items(request: Optional[Union[SearchDataItemsRequest, dict]] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) SearchDataItemsAsyncPager [source]¶
Searches DataItems in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_search_data_items(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.SearchDataItemsRequest( order_by_data_item="order_by_data_item_value", dataset="dataset_value", ) # Make the request page_result = client.search_data_items(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.SearchDataItemsRequest, dict]]) – The request object. Request message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.SearchDataItemsAsyncPager
- async set_iam_policy(request: Optional[SetIamPolicyRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Sets the IAM access control policy on the specified function.
Replaces any existing policy.
- Parameters:
request (
SetIamPolicyRequest
) – The request object. Request message for SetIamPolicy method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- async test_iam_permissions(request: Optional[TestIamPermissionsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) TestIamPermissionsResponse [source]¶
- Tests the specified IAM permissions against the IAM access control
policy for a function.
If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
- Parameters:
request (
TestIamPermissionsRequest
) – The request object. Request message for TestIamPermissions method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
TestIamPermissions
method.- Return type:
TestIamPermissionsResponse
- property transport: DatasetServiceTransport¶
Returns the transport used by the client instance.
- Returns:
The transport used by the client instance.
- Return type:
DatasetServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns:
- The universe domain used
by the client instance.
- Return type:
- async update_dataset(request: Optional[Union[UpdateDatasetRequest, dict]] = None, *, dataset: Optional[Dataset] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Dataset [source]¶
Updates a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_update_dataset(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) dataset = aiplatform_v1.Dataset() dataset.display_name = "display_name_value" dataset.metadata_schema_uri = "metadata_schema_uri_value" dataset.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.UpdateDatasetRequest( dataset=dataset, ) # Make the request response = await client.update_dataset(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.UpdateDatasetRequest, dict]]) – The request object. Request message for [DatasetService.UpdateDataset][google.cloud.aiplatform.v1.DatasetService.UpdateDataset].
dataset (
google.cloud.aiplatform_v1.types.Dataset
) –Required. The Dataset which replaces the resource on the server.
This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
description
labels
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A collection of DataItems and Annotations on them.
- Return type:
- async update_dataset_version(request: Optional[Union[UpdateDatasetVersionRequest, dict]] = None, *, dataset_version: Optional[DatasetVersion] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) DatasetVersion [source]¶
Updates a DatasetVersion.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_update_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceAsyncClient() # Initialize request argument(s) dataset_version = aiplatform_v1.DatasetVersion() dataset_version.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.UpdateDatasetVersionRequest( dataset_version=dataset_version, ) # Make the request response = await client.update_dataset_version(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.UpdateDatasetVersionRequest, dict]]) – The request object. Request message for [DatasetService.UpdateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.UpdateDatasetVersion].
dataset_version (
google.cloud.aiplatform_v1.types.DatasetVersion
) –Required. The DatasetVersion which replaces the resource on the server.
This corresponds to the
dataset_version
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Describes the dataset version.
- Return type:
- async wait_operation(request: Optional[WaitOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.
If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
WaitOperationRequest
) – The request object. Request message for WaitOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- class google.cloud.aiplatform_v1.services.dataset_service.DatasetServiceClient(*, credentials: ~typing.Optional[~google.auth.credentials.Credentials] = None, transport: ~typing.Optional[~typing.Union[str, ~google.cloud.aiplatform_v1.services.dataset_service.transports.base.DatasetServiceTransport, ~typing.Callable[[...], ~google.cloud.aiplatform_v1.services.dataset_service.transports.base.DatasetServiceTransport]]] = None, client_options: ~typing.Optional[~typing.Union[~google.api_core.client_options.ClientOptions, dict]] = None, client_info: ~google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
The service that manages Vertex AI Dataset and its child resources.
Instantiates the dataset service client.
- Parameters:
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,DatasetServiceTransport,Callable[..., DatasetServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the DatasetServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises:
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- static annotation_path(project: str, location: str, dataset: str, data_item: str, annotation: str) str [source]¶
Returns a fully-qualified annotation string.
- static annotation_spec_path(project: str, location: str, dataset: str, annotation_spec: str) str [source]¶
Returns a fully-qualified annotation_spec string.
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns:
The API endpoint used by the client instance.
- Return type:
- cancel_operation(request: Optional[CancelOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Starts asynchronous cancellation on a long-running operation.
The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
CancelOperationRequest
) – The request object. Request message for CancelOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- create_dataset(request: Optional[Union[CreateDatasetRequest, dict]] = None, *, parent: Optional[str] = None, dataset: Optional[Dataset] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Creates a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_dataset(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) dataset = aiplatform_v1.Dataset() dataset.display_name = "display_name_value" dataset.metadata_schema_uri = "metadata_schema_uri_value" dataset.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.CreateDatasetRequest( parent="parent_value", dataset=dataset, ) # Make the request operation = client.create_dataset(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateDatasetRequest, dict]) – The request object. Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
parent (str) –
Required. The resource name of the Location to create the Dataset in. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset (google.cloud.aiplatform_v1.types.Dataset) – Required. The Dataset to create. This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.Dataset
A collection of DataItems and Annotations on them.- Return type:
- create_dataset_version(request: Optional[Union[CreateDatasetVersionRequest, dict]] = None, *, parent: Optional[str] = None, dataset_version: Optional[DatasetVersion] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Create a version from a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) dataset_version = aiplatform_v1.DatasetVersion() dataset_version.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.CreateDatasetVersionRequest( parent="parent_value", dataset_version=dataset_version, ) # Make the request operation = client.create_dataset_version(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateDatasetVersionRequest, dict]) – The request object. Request message for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.CreateDatasetVersion].
parent (str) –
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.dataset_version (google.cloud.aiplatform_v1.types.DatasetVersion) –
Required. The version to be created. The same CMEK policies with the original Dataset will be applied the dataset version. So here we don’t need to specify the EncryptionSpecType here.
This corresponds to the
dataset_version
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.DatasetVersion
Describes the dataset version.- Return type:
- static data_item_path(project: str, location: str, dataset: str, data_item: str) str [source]¶
Returns a fully-qualified data_item string.
- static dataset_path(project: str, location: str, dataset: str) str [source]¶
Returns a fully-qualified dataset string.
- static dataset_version_path(project: str, location: str, dataset: str, dataset_version: str) str [source]¶
Returns a fully-qualified dataset_version string.
- delete_dataset(request: Optional[Union[DeleteDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_dataset(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteDatasetRequest( name="name_value", ) # Make the request operation = client.delete_dataset(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteDatasetRequest, dict]) – The request object. Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1.DatasetService.DeleteDataset].
name (str) –
Required. The resource name of the Dataset to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_dataset_version(request: Optional[Union[DeleteDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes a Dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteDatasetVersionRequest( name="name_value", ) # Make the request operation = client.delete_dataset_version(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteDatasetVersionRequest, dict]) – The request object. Request message for [DatasetService.DeleteDatasetVersion][google.cloud.aiplatform.v1.DatasetService.DeleteDatasetVersion].
name (str) –
Required. The resource name of the Dataset version to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_operation(request: Optional[DeleteOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a long-running operation.
This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
DeleteOperationRequest
) – The request object. Request message for DeleteOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- delete_saved_query(request: Optional[Union[DeleteSavedQueryRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes a SavedQuery.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_saved_query(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteSavedQueryRequest( name="name_value", ) # Make the request operation = client.delete_saved_query(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteSavedQueryRequest, dict]) – The request object. Request message for [DatasetService.DeleteSavedQuery][google.cloud.aiplatform.v1.DatasetService.DeleteSavedQuery].
name (str) –
Required. The resource name of the SavedQuery to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/savedQueries/{saved_query}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- export_data(request: Optional[Union[ExportDataRequest, dict]] = None, *, name: Optional[str] = None, export_config: Optional[ExportDataConfig] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Exports data from a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_export_data(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) export_config = aiplatform_v1.ExportDataConfig() export_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value" request = aiplatform_v1.ExportDataRequest( name="name_value", export_config=export_config, ) # Make the request operation = client.export_data(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ExportDataRequest, dict]) – The request object. Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
name (str) –
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.export_config (google.cloud.aiplatform_v1.types.ExportDataConfig) –
Required. The desired output location.
This corresponds to the
export_config
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.ExportDataResponse
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
- The result type for the operation will be
- Return type:
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters:
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- get_annotation_spec(request: Optional[Union[GetAnnotationSpecRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AnnotationSpec [source]¶
Gets an AnnotationSpec.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_annotation_spec(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetAnnotationSpecRequest( name="name_value", ) # Make the request response = client.get_annotation_spec(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetAnnotationSpecRequest, dict]) – The request object. Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1.DatasetService.GetAnnotationSpec].
name (str) –
Required. The name of the AnnotationSpec resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}/annotationSpecs/{annotation_spec}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Identifies a concept with which DataItems may be annotated with.
- Return type:
- get_dataset(request: Optional[Union[GetDatasetRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Dataset [source]¶
Gets a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_dataset(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetDatasetRequest( name="name_value", ) # Make the request response = client.get_dataset(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetDatasetRequest, dict]) – The request object. Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1.DatasetService.GetDataset]. Next ID: 4
name (str) –
Required. The name of the Dataset resource.
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A collection of DataItems and Annotations on them.
- Return type:
- get_dataset_version(request: Optional[Union[GetDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) DatasetVersion [source]¶
Gets a Dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetDatasetVersionRequest( name="name_value", ) # Make the request response = client.get_dataset_version(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetDatasetVersionRequest, dict]) – The request object. Request message for [DatasetService.GetDatasetVersion][google.cloud.aiplatform.v1.DatasetService.GetDatasetVersion]. Next ID: 4
name (str) –
Required. The resource name of the Dataset version to delete. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Describes the dataset version.
- Return type:
- get_iam_policy(request: Optional[GetIamPolicyRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Gets the IAM access control policy for a function.
Returns an empty policy if the function exists and does not have a policy set.
- Parameters:
request (
GetIamPolicyRequest
) – The request object. Request message for GetIamPolicy method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- get_location(request: Optional[GetLocationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Location [source]¶
Gets information about a location.
- Parameters:
request (
GetLocationRequest
) – The request object. Request message for GetLocation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Location object.
- Return type:
Location
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters:
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns:
- returns the API endpoint and the
client cert source to use.
- Return type:
- Raises:
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- get_operation(request: Optional[GetOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters:
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- import_data(request: Optional[Union[ImportDataRequest, dict]] = None, *, name: Optional[str] = None, import_configs: Optional[MutableSequence[ImportDataConfig]] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Imports data into a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_import_data(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) import_configs = aiplatform_v1.ImportDataConfig() import_configs.gcs_source.uris = ['uris_value1', 'uris_value2'] import_configs.import_schema_uri = "import_schema_uri_value" request = aiplatform_v1.ImportDataRequest( name="name_value", import_configs=import_configs, ) # Make the request operation = client.import_data(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ImportDataRequest, dict]) – The request object. Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
name (str) –
Required. The name of the Dataset resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.import_configs (MutableSequence[google.cloud.aiplatform_v1.types.ImportDataConfig]) –
Required. The desired input locations. The contents of all input locations will be imported in one batch.
This corresponds to the
import_configs
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.ImportDataResponse
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
- The result type for the operation will be
- Return type:
- list_annotations(request: Optional[Union[ListAnnotationsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListAnnotationsPager [source]¶
Lists Annotations belongs to a dataitem This RPC is only available in InternalDatasetService. It is only used for exporting conversation data to CCAI Insights.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_annotations(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListAnnotationsRequest( parent="parent_value", ) # Make the request page_result = client.list_annotations(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListAnnotationsRequest, dict]) – The request object. Request message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
parent (str) –
Required. The resource name of the DataItem to list Annotations from. Format:
projects/{project}/locations/{location}/datasets/{dataset}/dataItems/{data_item}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListAnnotationsPager
- list_data_items(request: Optional[Union[ListDataItemsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDataItemsPager [source]¶
Lists DataItems in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_data_items(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListDataItemsRequest( parent="parent_value", ) # Make the request page_result = client.list_data_items(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListDataItemsRequest, dict]) – The request object. Request message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
parent (str) –
Required. The resource name of the Dataset to list DataItems from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDataItemsPager
- list_dataset_versions(request: Optional[Union[ListDatasetVersionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDatasetVersionsPager [source]¶
Lists DatasetVersions in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_dataset_versions(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListDatasetVersionsRequest( parent="parent_value", ) # Make the request page_result = client.list_dataset_versions(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListDatasetVersionsRequest, dict]) – The request object. Request message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
parent (str) –
Required. The resource name of the Dataset to list DatasetVersions from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1.DatasetService.ListDatasetVersions].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetVersionsPager
- list_datasets(request: Optional[Union[ListDatasetsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListDatasetsPager [source]¶
Lists Datasets in a Location.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_datasets(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListDatasetsRequest( parent="parent_value", ) # Make the request page_result = client.list_datasets(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListDatasetsRequest, dict]) – The request object. Request message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
parent (str) –
Required. The name of the Dataset’s parent resource. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetsPager
- list_locations(request: Optional[ListLocationsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListLocationsResponse [source]¶
Lists information about the supported locations for this service.
- Parameters:
request (
ListLocationsRequest
) – The request object. Request message for ListLocations method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListLocations
method.- Return type:
ListLocationsResponse
- list_operations(request: Optional[ListOperationsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters:
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListOperations
method.- Return type:
ListOperationsResponse
- list_saved_queries(request: Optional[Union[ListSavedQueriesRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListSavedQueriesPager [source]¶
Lists SavedQueries in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_saved_queries(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListSavedQueriesRequest( parent="parent_value", ) # Make the request page_result = client.list_saved_queries(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListSavedQueriesRequest, dict]) – The request object. Request message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
parent (str) –
Required. The resource name of the Dataset to list SavedQueries from. Format:
projects/{project}/locations/{location}/datasets/{dataset}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.ListSavedQueriesPager
- static parse_annotation_path(path: str) Dict[str, str] [source]¶
Parses a annotation path into its component segments.
- static parse_annotation_spec_path(path: str) Dict[str, str] [source]¶
Parses a annotation_spec path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_data_item_path(path: str) Dict[str, str] [source]¶
Parses a data_item path into its component segments.
- static parse_dataset_path(path: str) Dict[str, str] [source]¶
Parses a dataset path into its component segments.
- static parse_dataset_version_path(path: str) Dict[str, str] [source]¶
Parses a dataset_version path into its component segments.
- static parse_saved_query_path(path: str) Dict[str, str] [source]¶
Parses a saved_query path into its component segments.
- restore_dataset_version(request: Optional[Union[RestoreDatasetVersionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Restores a dataset version.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_restore_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.RestoreDatasetVersionRequest( name="name_value", ) # Make the request operation = client.restore_dataset_version(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.RestoreDatasetVersionRequest, dict]) – The request object. Request message for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1.DatasetService.RestoreDatasetVersion].
name (str) –
Required. The name of the DatasetVersion resource. Format:
projects/{project}/locations/{location}/datasets/{dataset}/datasetVersions/{dataset_version}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
The result type for the operation will be
google.cloud.aiplatform_v1.types.DatasetVersion
Describes the dataset version.- Return type:
- static saved_query_path(project: str, location: str, dataset: str, saved_query: str) str [source]¶
Returns a fully-qualified saved_query string.
- search_data_items(request: Optional[Union[SearchDataItemsRequest, dict]] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) SearchDataItemsPager [source]¶
Searches DataItems in a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_search_data_items(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) request = aiplatform_v1.SearchDataItemsRequest( order_by_data_item="order_by_data_item_value", dataset="dataset_value", ) # Make the request page_result = client.search_data_items(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.SearchDataItemsRequest, dict]) – The request object. Request message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.dataset_service.pagers.SearchDataItemsPager
- set_iam_policy(request: Optional[SetIamPolicyRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Sets the IAM access control policy on the specified function.
Replaces any existing policy.
- Parameters:
request (
SetIamPolicyRequest
) – The request object. Request message for SetIamPolicy method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- test_iam_permissions(request: Optional[TestIamPermissionsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) TestIamPermissionsResponse [source]¶
- Tests the specified IAM permissions against the IAM access control
policy for a function.
If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
- Parameters:
request (
TestIamPermissionsRequest
) – The request object. Request message for TestIamPermissions method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
TestIamPermissions
method.- Return type:
TestIamPermissionsResponse
- property transport: DatasetServiceTransport¶
Returns the transport used by the client instance.
- Returns:
- The transport used by the client
instance.
- Return type:
DatasetServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns:
The universe domain used by the client instance.
- Return type:
- update_dataset(request: Optional[Union[UpdateDatasetRequest, dict]] = None, *, dataset: Optional[Dataset] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Dataset [source]¶
Updates a Dataset.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_dataset(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) dataset = aiplatform_v1.Dataset() dataset.display_name = "display_name_value" dataset.metadata_schema_uri = "metadata_schema_uri_value" dataset.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.UpdateDatasetRequest( dataset=dataset, ) # Make the request response = client.update_dataset(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.UpdateDatasetRequest, dict]) – The request object. Request message for [DatasetService.UpdateDataset][google.cloud.aiplatform.v1.DatasetService.UpdateDataset].
dataset (google.cloud.aiplatform_v1.types.Dataset) –
Required. The Dataset which replaces the resource on the server.
This corresponds to the
dataset
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
description
labels
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A collection of DataItems and Annotations on them.
- Return type:
- update_dataset_version(request: Optional[Union[UpdateDatasetVersionRequest, dict]] = None, *, dataset_version: Optional[DatasetVersion] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) DatasetVersion [source]¶
Updates a DatasetVersion.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_dataset_version(): # Create a client client = aiplatform_v1.DatasetServiceClient() # Initialize request argument(s) dataset_version = aiplatform_v1.DatasetVersion() dataset_version.metadata.null_value = "NULL_VALUE" request = aiplatform_v1.UpdateDatasetVersionRequest( dataset_version=dataset_version, ) # Make the request response = client.update_dataset_version(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.UpdateDatasetVersionRequest, dict]) – The request object. Request message for [DatasetService.UpdateDatasetVersion][google.cloud.aiplatform.v1.DatasetService.UpdateDatasetVersion].
dataset_version (google.cloud.aiplatform_v1.types.DatasetVersion) –
Required. The DatasetVersion which replaces the resource on the server.
This corresponds to the
dataset_version
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Required. The update mask applies to the resource. For the
FieldMask
definition, see [google.protobuf.FieldMask][google.protobuf.FieldMask]. Updatable fields:display_name
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Describes the dataset version.
- Return type:
- wait_operation(request: Optional[WaitOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.
If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
WaitOperationRequest
) – The request object. Request message for WaitOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListAnnotationsAsyncPager(method: Callable[[...], Awaitable[ListAnnotationsResponse]], request: ListAnnotationsRequest, response: ListAnnotationsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_annotations
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListAnnotationsResponse
object, and provides an__aiter__
method to iterate through itsannotations
field.If there are more pages, the
__aiter__
method will make additionalListAnnotations
requests and continue to iterate through theannotations
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListAnnotationsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListAnnotationsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListAnnotationsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListAnnotationsPager(method: Callable[[...], ListAnnotationsResponse], request: ListAnnotationsRequest, response: ListAnnotationsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_annotations
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListAnnotationsResponse
object, and provides an__iter__
method to iterate through itsannotations
field.If there are more pages, the
__iter__
method will make additionalListAnnotations
requests and continue to iterate through theannotations
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListAnnotationsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListAnnotationsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListAnnotationsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDataItemsAsyncPager(method: Callable[[...], Awaitable[ListDataItemsResponse]], request: ListDataItemsRequest, response: ListDataItemsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_data_items
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDataItemsResponse
object, and provides an__aiter__
method to iterate through itsdata_items
field.If there are more pages, the
__aiter__
method will make additionalListDataItems
requests and continue to iterate through thedata_items
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDataItemsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDataItemsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDataItemsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDataItemsPager(method: Callable[[...], ListDataItemsResponse], request: ListDataItemsRequest, response: ListDataItemsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_data_items
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDataItemsResponse
object, and provides an__iter__
method to iterate through itsdata_items
field.If there are more pages, the
__iter__
method will make additionalListDataItems
requests and continue to iterate through thedata_items
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDataItemsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDataItemsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDataItemsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetVersionsAsyncPager(method: Callable[[...], Awaitable[ListDatasetVersionsResponse]], request: ListDatasetVersionsRequest, response: ListDatasetVersionsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_dataset_versions
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse
object, and provides an__aiter__
method to iterate through itsdataset_versions
field.If there are more pages, the
__aiter__
method will make additionalListDatasetVersions
requests and continue to iterate through thedataset_versions
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDatasetVersionsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetVersionsPager(method: Callable[[...], ListDatasetVersionsResponse], request: ListDatasetVersionsRequest, response: ListDatasetVersionsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_dataset_versions
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse
object, and provides an__iter__
method to iterate through itsdataset_versions
field.If there are more pages, the
__iter__
method will make additionalListDatasetVersions
requests and continue to iterate through thedataset_versions
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDatasetVersionsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDatasetVersionsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetsAsyncPager(method: Callable[[...], Awaitable[ListDatasetsResponse]], request: ListDatasetsRequest, response: ListDatasetsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_datasets
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDatasetsResponse
object, and provides an__aiter__
method to iterate through itsdatasets
field.If there are more pages, the
__aiter__
method will make additionalListDatasets
requests and continue to iterate through thedatasets
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDatasetsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDatasetsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDatasetsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListDatasetsPager(method: Callable[[...], ListDatasetsResponse], request: ListDatasetsRequest, response: ListDatasetsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_datasets
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListDatasetsResponse
object, and provides an__iter__
method to iterate through itsdatasets
field.If there are more pages, the
__iter__
method will make additionalListDatasets
requests and continue to iterate through thedatasets
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListDatasetsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListDatasetsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListDatasetsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListSavedQueriesAsyncPager(method: Callable[[...], Awaitable[ListSavedQueriesResponse]], request: ListSavedQueriesRequest, response: ListSavedQueriesResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_saved_queries
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListSavedQueriesResponse
object, and provides an__aiter__
method to iterate through itssaved_queries
field.If there are more pages, the
__aiter__
method will make additionalListSavedQueries
requests and continue to iterate through thesaved_queries
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListSavedQueriesResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListSavedQueriesRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListSavedQueriesResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.ListSavedQueriesPager(method: Callable[[...], ListSavedQueriesResponse], request: ListSavedQueriesRequest, response: ListSavedQueriesResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_saved_queries
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListSavedQueriesResponse
object, and provides an__iter__
method to iterate through itssaved_queries
field.If there are more pages, the
__iter__
method will make additionalListSavedQueries
requests and continue to iterate through thesaved_queries
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListSavedQueriesResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListSavedQueriesRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListSavedQueriesResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.SearchDataItemsAsyncPager(method: Callable[[...], Awaitable[SearchDataItemsResponse]], request: SearchDataItemsRequest, response: SearchDataItemsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
search_data_items
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.SearchDataItemsResponse
object, and provides an__aiter__
method to iterate through itsdata_item_views
field.If there are more pages, the
__aiter__
method will make additionalSearchDataItems
requests and continue to iterate through thedata_item_views
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.SearchDataItemsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.SearchDataItemsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.SearchDataItemsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.dataset_service.pagers.SearchDataItemsPager(method: Callable[[...], SearchDataItemsResponse], request: SearchDataItemsRequest, response: SearchDataItemsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
search_data_items
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.SearchDataItemsResponse
object, and provides an__iter__
method to iterate through itsdata_item_views
field.If there are more pages, the
__iter__
method will make additionalSearchDataItems
requests and continue to iterate through thedata_item_views
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.SearchDataItemsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.SearchDataItemsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.SearchDataItemsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.