MetadataService¶
- class google.cloud.aiplatform_v1.services.metadata_service.MetadataServiceAsyncClient(*, credentials: ~typing.Optional[~google.auth.credentials.Credentials] = None, transport: ~typing.Optional[~typing.Union[str, ~google.cloud.aiplatform_v1.services.metadata_service.transports.base.MetadataServiceTransport, ~typing.Callable[[...], ~google.cloud.aiplatform_v1.services.metadata_service.transports.base.MetadataServiceTransport]]] = 'grpc_asyncio', client_options: ~typing.Optional[~google.api_core.client_options.ClientOptions] = None, client_info: ~google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Service for reading and writing metadata entries.
Instantiates the metadata service async client.
- Parameters:
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,MetadataServiceTransport,Callable[..., MetadataServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the MetadataServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note thatapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises:
google.auth.exceptions.MutualTlsChannelError – If mutual TLS transport creation failed for any reason.
- async add_context_artifacts_and_executions(request: Optional[Union[AddContextArtifactsAndExecutionsRequest, dict]] = None, *, context: Optional[str] = None, artifacts: Optional[MutableSequence[str]] = None, executions: Optional[MutableSequence[str]] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddContextArtifactsAndExecutionsResponse [source]¶
Adds a set of Artifacts and Executions to a Context. If any of the Artifacts or Executions have already been added to a Context, they are simply skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_add_context_artifacts_and_executions(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.AddContextArtifactsAndExecutionsRequest( context="context_value", ) # Make the request response = await client.add_context_artifacts_and_executions(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsRequest, dict]]) – The request object. Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
context (
str
) –Required. The resource name of the Context that the Artifacts and Executions belong to. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.artifacts (
MutableSequence[str]
) –The resource names of the Artifacts to attribute to the Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
artifacts
field on therequest
instance; ifrequest
is provided, this should not be set.executions (
MutableSequence[str]
) –The resource names of the Executions to associate with the Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
executions
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
- Return type:
google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsResponse
- async add_context_children(request: Optional[Union[AddContextChildrenRequest, dict]] = None, *, context: Optional[str] = None, child_contexts: Optional[MutableSequence[str]] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddContextChildrenResponse [source]¶
Adds a set of Contexts as children to a parent Context. If any of the child Contexts have already been added to the parent Context, they are simply skipped. If this call would create a cycle or cause any Context to have more than 10 parents, the request will fail with an INVALID_ARGUMENT error.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_add_context_children(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.AddContextChildrenRequest( context="context_value", ) # Make the request response = await client.add_context_children(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.AddContextChildrenRequest, dict]]) – The request object. Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
context (
str
) –Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.child_contexts (
MutableSequence[str]
) –The resource names of the child Contexts.
This corresponds to the
child_contexts
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
- Return type:
- async add_execution_events(request: Optional[Union[AddExecutionEventsRequest, dict]] = None, *, execution: Optional[str] = None, events: Optional[MutableSequence[Event]] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddExecutionEventsResponse [source]¶
Adds Events to the specified Execution. An Event indicates whether an Artifact was used as an input or output for an Execution. If an Event already exists between the Execution and the Artifact, the Event is skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_add_execution_events(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.AddExecutionEventsRequest( execution="execution_value", ) # Make the request response = await client.add_execution_events(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.AddExecutionEventsRequest, dict]]) – The request object. Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
execution (
str
) –Required. The resource name of the Execution that the Events connect Artifacts with. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.events (
MutableSequence[google.cloud.aiplatform_v1.types.Event]
) – The Events to create and add. This corresponds to theevents
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
- Return type:
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns:
The API endpoint used by the client instance.
- Return type:
- static artifact_path(project: str, location: str, metadata_store: str, artifact: str) str ¶
Returns a fully-qualified artifact string.
- async cancel_operation(request: Optional[CancelOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Starts asynchronous cancellation on a long-running operation.
The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
CancelOperationRequest
) – The request object. Request message for CancelOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static common_billing_account_path(billing_account: str) str ¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str ¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str ¶
Returns a fully-qualified organization string.
- static context_path(project: str, location: str, metadata_store: str, context: str) str ¶
Returns a fully-qualified context string.
- async create_artifact(request: Optional[Union[CreateArtifactRequest, dict]] = None, *, parent: Optional[str] = None, artifact: Optional[Artifact] = None, artifact_id: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Creates an Artifact associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_artifact(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.CreateArtifactRequest( parent="parent_value", ) # Make the request response = await client.create_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateArtifactRequest, dict]]) – The request object. Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1.MetadataService.CreateArtifact].
parent (
str
) –Required. The resource name of the MetadataStore where the Artifact should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.artifact (
google.cloud.aiplatform_v1.types.Artifact
) – Required. The Artifact to create. This corresponds to theartifact
field on therequest
instance; ifrequest
is provided, this should not be set.artifact_id (
str
) –The {artifact} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
If not provided, the Artifact’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Artifacts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Artifact.)This corresponds to the
artifact_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- async create_context(request: Optional[Union[CreateContextRequest, dict]] = None, *, parent: Optional[str] = None, context: Optional[Context] = None, context_id: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Creates a Context associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_context(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.CreateContextRequest( parent="parent_value", ) # Make the request response = await client.create_context(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateContextRequest, dict]]) – The request object. Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1.MetadataService.CreateContext].
parent (
str
) –Required. The resource name of the MetadataStore where the Context should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.context (
google.cloud.aiplatform_v1.types.Context
) – Required. The Context to create. This corresponds to thecontext
field on therequest
instance; ifrequest
is provided, this should not be set.context_id (
str
) –The {context} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
. If not provided, the Context’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Contexts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Context.)This corresponds to the
context_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- async create_execution(request: Optional[Union[CreateExecutionRequest, dict]] = None, *, parent: Optional[str] = None, execution: Optional[Execution] = None, execution_id: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Creates an Execution associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_execution(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.CreateExecutionRequest( parent="parent_value", ) # Make the request response = await client.create_execution(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateExecutionRequest, dict]]) – The request object. Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1.MetadataService.CreateExecution].
parent (
str
) –Required. The resource name of the MetadataStore where the Execution should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.execution (
google.cloud.aiplatform_v1.types.Execution
) – Required. The Execution to create. This corresponds to theexecution
field on therequest
instance; ifrequest
is provided, this should not be set.execution_id (
str
) –The {execution} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
If not provided, the Execution’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Executions in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Execution.)This corresponds to the
execution_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- async create_metadata_schema(request: Optional[Union[CreateMetadataSchemaRequest, dict]] = None, *, parent: Optional[str] = None, metadata_schema: Optional[MetadataSchema] = None, metadata_schema_id: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataSchema [source]¶
Creates a MetadataSchema.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_metadata_schema(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) metadata_schema = aiplatform_v1.MetadataSchema() metadata_schema.schema = "schema_value" request = aiplatform_v1.CreateMetadataSchemaRequest( parent="parent_value", metadata_schema=metadata_schema, ) # Make the request response = await client.create_metadata_schema(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateMetadataSchemaRequest, dict]]) – The request object. Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1.MetadataService.CreateMetadataSchema].
parent (
str
) –Required. The resource name of the MetadataStore where the MetadataSchema should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_schema (
google.cloud.aiplatform_v1.types.MetadataSchema
) –Required. The MetadataSchema to create.
This corresponds to the
metadata_schema
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_schema_id (
str
) –The {metadata_schema} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/metadataSchemas/{metadataschema}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataSchemas in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataSchema.)This corresponds to the
metadata_schema_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general MetadataSchema.
- Return type:
- async create_metadata_store(request: Optional[Union[CreateMetadataStoreRequest, dict]] = None, *, parent: Optional[str] = None, metadata_store: Optional[MetadataStore] = None, metadata_store_id: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Initializes a MetadataStore, including allocation of resources.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_create_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.CreateMetadataStoreRequest( parent="parent_value", ) # Make the request operation = client.create_metadata_store(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.CreateMetadataStoreRequest, dict]]) – The request object. Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
parent (
str
) –Required. The resource name of the Location where the MetadataStore should be created. Format:
projects/{project}/locations/{location}/
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_store (
google.cloud.aiplatform_v1.types.MetadataStore
) –Required. The MetadataStore to create.
This corresponds to the
metadata_store
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_store_id (
str
) –The {metadatastore} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataStores in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataStore.)This corresponds to the
metadata_store_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.MetadataStore
Instance of a metadata store. Contains a set of metadata that can be queried.
- The result type for the operation will be
- Return type:
- async delete_artifact(request: Optional[Union[DeleteArtifactRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes an Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_artifact(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteArtifactRequest( name="name_value", ) # Make the request operation = client.delete_artifact(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteArtifactRequest, dict]]) – The request object. Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1.MetadataService.DeleteArtifact].
name (
str
) –Required. The resource name of the Artifact to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_context(request: Optional[Union[DeleteContextRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes a stored Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_context(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteContextRequest( name="name_value", ) # Make the request operation = client.delete_context(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteContextRequest, dict]]) – The request object. Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1.MetadataService.DeleteContext].
name (
str
) –Required. The resource name of the Context to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_execution(request: Optional[Union[DeleteExecutionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes an Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_execution(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteExecutionRequest( name="name_value", ) # Make the request operation = client.delete_execution(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteExecutionRequest, dict]]) – The request object. Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1.MetadataService.DeleteExecution].
name (
str
) –Required. The resource name of the Execution to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_metadata_store(request: Optional[Union[DeleteMetadataStoreRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Deletes a single MetadataStore and all its child resources (Artifacts, Executions, and Contexts).
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_delete_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.DeleteMetadataStoreRequest( name="name_value", ) # Make the request operation = client.delete_metadata_store(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.DeleteMetadataStoreRequest, dict]]) – The request object. Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
name (
str
) –Required. The resource name of the MetadataStore to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- async delete_operation(request: Optional[DeleteOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a long-running operation.
This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
DeleteOperationRequest
) – The request object. Request message for DeleteOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static execution_path(project: str, location: str, metadata_store: str, execution: str) str ¶
Returns a fully-qualified execution string.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters:
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- async get_artifact(request: Optional[Union[GetArtifactRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Retrieves a specific Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_artifact(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetArtifactRequest( name="name_value", ) # Make the request response = await client.get_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetArtifactRequest, dict]]) – The request object. Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1.MetadataService.GetArtifact].
name (
str
) –Required. The resource name of the Artifact to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- async get_context(request: Optional[Union[GetContextRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Retrieves a specific Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_context(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetContextRequest( name="name_value", ) # Make the request response = await client.get_context(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetContextRequest, dict]]) – The request object. Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1.MetadataService.GetContext].
name (
str
) –Required. The resource name of the Context to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- async get_execution(request: Optional[Union[GetExecutionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Retrieves a specific Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_execution(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetExecutionRequest( name="name_value", ) # Make the request response = await client.get_execution(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetExecutionRequest, dict]]) – The request object. Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1.MetadataService.GetExecution].
name (
str
) –Required. The resource name of the Execution to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- async get_iam_policy(request: Optional[GetIamPolicyRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Gets the IAM access control policy for a function.
Returns an empty policy if the function exists and does not have a policy set.
- Parameters:
request (
GetIamPolicyRequest
) – The request object. Request message for GetIamPolicy method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- async get_location(request: Optional[GetLocationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Location [source]¶
Gets information about a location.
- Parameters:
request (
GetLocationRequest
) – The request object. Request message for GetLocation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Location object.
- Return type:
Location
- async get_metadata_schema(request: Optional[Union[GetMetadataSchemaRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataSchema [source]¶
Retrieves a specific MetadataSchema.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_metadata_schema(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetMetadataSchemaRequest( name="name_value", ) # Make the request response = await client.get_metadata_schema(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetMetadataSchemaRequest, dict]]) – The request object. Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1.MetadataService.GetMetadataSchema].
name (
str
) –Required. The resource name of the MetadataSchema to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/metadataSchemas/{metadataschema}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general MetadataSchema.
- Return type:
- async get_metadata_store(request: Optional[Union[GetMetadataStoreRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataStore [source]¶
Retrieves a specific MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_get_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.GetMetadataStoreRequest( name="name_value", ) # Make the request response = await client.get_metadata_store(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.GetMetadataStoreRequest, dict]]) – The request object. Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1.MetadataService.GetMetadataStore].
name (
str
) –Required. The resource name of the MetadataStore to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a metadata store. Contains a set of metadata that can be queried.
- Return type:
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[ClientOptions] = None)[source]¶
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters:
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns:
- returns the API endpoint and the
client cert source to use.
- Return type:
- Raises:
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- async get_operation(request: Optional[GetOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters:
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- classmethod get_transport_class(label: Optional[str] = None) Type[MetadataServiceTransport] ¶
Returns an appropriate transport class.
- Parameters:
label – The name of the desired transport. If none is provided, then the first transport in the registry is used.
- Returns:
The transport class to use.
- async list_artifacts(request: Optional[Union[ListArtifactsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListArtifactsAsyncPager [source]¶
Lists Artifacts in the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_artifacts(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListArtifactsRequest( parent="parent_value", ) # Make the request page_result = client.list_artifacts(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListArtifactsRequest, dict]]) – The request object. Request message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
parent (
str
) –Required. The MetadataStore whose Artifacts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListArtifactsAsyncPager
- async list_contexts(request: Optional[Union[ListContextsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListContextsAsyncPager [source]¶
Lists Contexts on the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_contexts(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListContextsRequest( parent="parent_value", ) # Make the request page_result = client.list_contexts(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListContextsRequest, dict]]) – The request object. Request message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts]
parent (
str
) –Required. The MetadataStore whose Contexts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListContextsAsyncPager
- async list_executions(request: Optional[Union[ListExecutionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListExecutionsAsyncPager [source]¶
Lists Executions in the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_executions(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListExecutionsRequest( parent="parent_value", ) # Make the request page_result = client.list_executions(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListExecutionsRequest, dict]]) – The request object. Request message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
parent (
str
) –Required. The MetadataStore whose Executions should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListExecutionsAsyncPager
- async list_locations(request: Optional[ListLocationsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListLocationsResponse [source]¶
Lists information about the supported locations for this service.
- Parameters:
request (
ListLocationsRequest
) – The request object. Request message for ListLocations method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListLocations
method.- Return type:
ListLocationsResponse
- async list_metadata_schemas(request: Optional[Union[ListMetadataSchemasRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListMetadataSchemasAsyncPager [source]¶
Lists MetadataSchemas.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_metadata_schemas(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListMetadataSchemasRequest( parent="parent_value", ) # Make the request page_result = client.list_metadata_schemas(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListMetadataSchemasRequest, dict]]) – The request object. Request message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
parent (
str
) –Required. The MetadataStore whose MetadataSchemas should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataSchemasAsyncPager
- async list_metadata_stores(request: Optional[Union[ListMetadataStoresRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListMetadataStoresAsyncPager [source]¶
Lists MetadataStores for a Location.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_list_metadata_stores(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.ListMetadataStoresRequest( parent="parent_value", ) # Make the request page_result = client.list_metadata_stores(request=request) # Handle the response async for response in page_result: print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.ListMetadataStoresRequest, dict]]) – The request object. Request message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
parent (
str
) –Required. The Location whose MetadataStores should be listed. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataStoresAsyncPager
- async list_operations(request: Optional[ListOperationsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters:
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListOperations
method.- Return type:
ListOperationsResponse
- static metadata_schema_path(project: str, location: str, metadata_store: str, metadata_schema: str) str ¶
Returns a fully-qualified metadata_schema string.
- static metadata_store_path(project: str, location: str, metadata_store: str) str ¶
Returns a fully-qualified metadata_store string.
- static parse_artifact_path(path: str) Dict[str, str] ¶
Parses a artifact path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] ¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] ¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] ¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] ¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] ¶
Parse a project path into its component segments.
- static parse_context_path(path: str) Dict[str, str] ¶
Parses a context path into its component segments.
- static parse_execution_path(path: str) Dict[str, str] ¶
Parses a execution path into its component segments.
- static parse_metadata_schema_path(path: str) Dict[str, str] ¶
Parses a metadata_schema path into its component segments.
- static parse_metadata_store_path(path: str) Dict[str, str] ¶
Parses a metadata_store path into its component segments.
- async purge_artifacts(request: Optional[Union[PurgeArtifactsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Purges Artifacts.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_purge_artifacts(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.PurgeArtifactsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_artifacts(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.PurgeArtifactsRequest, dict]]) – The request object. Request message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
parent (
str
) –Required. The metadata store to purge Artifacts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeArtifactsResponse
Response message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
- The result type for the operation will be
- Return type:
- async purge_contexts(request: Optional[Union[PurgeContextsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Purges Contexts.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_purge_contexts(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.PurgeContextsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_contexts(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.PurgeContextsRequest, dict]]) – The request object. Request message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
parent (
str
) –Required. The metadata store to purge Contexts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeContextsResponse
Response message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
- The result type for the operation will be
- Return type:
- async purge_executions(request: Optional[Union[PurgeExecutionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AsyncOperation [source]¶
Purges Executions.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_purge_executions(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.PurgeExecutionsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_executions(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.PurgeExecutionsRequest, dict]]) – The request object. Request message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
parent (
str
) –Required. The metadata store to purge Executions from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeExecutionsResponse
Response message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
- The result type for the operation will be
- Return type:
- async query_artifact_lineage_subgraph(request: Optional[Union[QueryArtifactLineageSubgraphRequest, dict]] = None, *, artifact: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Retrieves lineage of an Artifact represented through Artifacts and Executions connected by Event edges and returned as a LineageSubgraph.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_query_artifact_lineage_subgraph(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.QueryArtifactLineageSubgraphRequest( artifact="artifact_value", ) # Make the request response = await client.query_artifact_lineage_subgraph(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.QueryArtifactLineageSubgraphRequest, dict]]) – The request object. Request message for [MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryArtifactLineageSubgraph].
artifact (
str
) –Required. The resource name of the Artifact whose Lineage needs to be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
This corresponds to the
artifact
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- async query_context_lineage_subgraph(request: Optional[Union[QueryContextLineageSubgraphRequest, dict]] = None, *, context: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Retrieves Artifacts and Executions within the specified Context, connected by Event edges and returned as a LineageSubgraph.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_query_context_lineage_subgraph(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.QueryContextLineageSubgraphRequest( context="context_value", ) # Make the request response = await client.query_context_lineage_subgraph(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.QueryContextLineageSubgraphRequest, dict]]) – The request object. Request message for [MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryContextLineageSubgraph].
context (
str
) –Required. The resource name of the Context whose Artifacts and Executions should be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- async query_execution_inputs_and_outputs(request: Optional[Union[QueryExecutionInputsAndOutputsRequest, dict]] = None, *, execution: Optional[str] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Obtains the set of input and output Artifacts for this Execution, in the form of LineageSubgraph that also contains the Execution and connecting Events.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_query_execution_inputs_and_outputs(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.QueryExecutionInputsAndOutputsRequest( execution="execution_value", ) # Make the request response = await client.query_execution_inputs_and_outputs(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.QueryExecutionInputsAndOutputsRequest, dict]]) – The request object. Request message for [MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1.MetadataService.QueryExecutionInputsAndOutputs].
execution (
str
) –Required. The resource name of the Execution whose input and output Artifacts should be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- async remove_context_children(request: Optional[Union[RemoveContextChildrenRequest, dict]] = None, *, context: Optional[str] = None, child_contexts: Optional[MutableSequence[str]] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) RemoveContextChildrenResponse [source]¶
Remove a set of children contexts from a parent Context. If any of the child Contexts were NOT added to the parent Context, they are simply skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_remove_context_children(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.RemoveContextChildrenRequest( context="context_value", ) # Make the request response = await client.remove_context_children(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.RemoveContextChildrenRequest, dict]]) – The request object. Request message for [MetadataService.DeleteContextChildrenRequest][].
context (
str
) –Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.child_contexts (
MutableSequence[str]
) –The resource names of the child Contexts.
This corresponds to the
child_contexts
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1.MetadataService.RemoveContextChildren].
- Return type:
google.cloud.aiplatform_v1.types.RemoveContextChildrenResponse
- async set_iam_policy(request: Optional[SetIamPolicyRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Sets the IAM access control policy on the specified function.
Replaces any existing policy.
- Parameters:
request (
SetIamPolicyRequest
) – The request object. Request message for SetIamPolicy method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- async test_iam_permissions(request: Optional[TestIamPermissionsRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) TestIamPermissionsResponse [source]¶
- Tests the specified IAM permissions against the IAM access control
policy for a function.
If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
- Parameters:
request (
TestIamPermissionsRequest
) – The request object. Request message for TestIamPermissions method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
TestIamPermissions
method.- Return type:
TestIamPermissionsResponse
- property transport: MetadataServiceTransport¶
Returns the transport used by the client instance.
- Returns:
The transport used by the client instance.
- Return type:
MetadataServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns:
- The universe domain used
by the client instance.
- Return type:
- async update_artifact(request: Optional[Union[UpdateArtifactRequest, dict]] = None, *, artifact: Optional[Artifact] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Updates a stored Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_update_artifact(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.UpdateArtifactRequest( ) # Make the request response = await client.update_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.UpdateArtifactRequest, dict]]) – The request object. Request message for [MetadataService.UpdateArtifact][google.cloud.aiplatform.v1.MetadataService.UpdateArtifact].
artifact (
google.cloud.aiplatform_v1.types.Artifact
) –Required. The Artifact containing updates. The Artifact’s [Artifact.name][google.cloud.aiplatform.v1.Artifact.name] field is used to identify the Artifact to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
artifact
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- async update_context(request: Optional[Union[UpdateContextRequest, dict]] = None, *, context: Optional[Context] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Updates a stored Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_update_context(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.UpdateContextRequest( ) # Make the request response = await client.update_context(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.UpdateContextRequest, dict]]) – The request object. Request message for [MetadataService.UpdateContext][google.cloud.aiplatform.v1.MetadataService.UpdateContext].
context (
google.cloud.aiplatform_v1.types.Context
) –Required. The Context containing updates. The Context’s [Context.name][google.cloud.aiplatform.v1.Context.name] field is used to identify the Context to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- async update_execution(request: Optional[Union[UpdateExecutionRequest, dict]] = None, *, execution: Optional[Execution] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Updates a stored Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 async def sample_update_execution(): # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.UpdateExecutionRequest( ) # Make the request response = await client.update_execution(request=request) # Handle the response print(response)
- Parameters:
request (Optional[Union[google.cloud.aiplatform_v1.types.UpdateExecutionRequest, dict]]) – The request object. Request message for [MetadataService.UpdateExecution][google.cloud.aiplatform.v1.MetadataService.UpdateExecution].
execution (
google.cloud.aiplatform_v1.types.Execution
) –Required. The Execution containing updates. The Execution’s [Execution.name][google.cloud.aiplatform.v1.Execution.name] field is used to identify the Execution to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (
google.protobuf.field_mask_pb2.FieldMask
) –Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- async wait_operation(request: Optional[WaitOperationRequest] = None, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.
If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
WaitOperationRequest
) – The request object. Request message for WaitOperation method.retry (google.api_core.retry_async.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- class google.cloud.aiplatform_v1.services.metadata_service.MetadataServiceClient(*, credentials: ~typing.Optional[~google.auth.credentials.Credentials] = None, transport: ~typing.Optional[~typing.Union[str, ~google.cloud.aiplatform_v1.services.metadata_service.transports.base.MetadataServiceTransport, ~typing.Callable[[...], ~google.cloud.aiplatform_v1.services.metadata_service.transports.base.MetadataServiceTransport]]] = None, client_options: ~typing.Optional[~typing.Union[~google.api_core.client_options.ClientOptions, dict]] = None, client_info: ~google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)[source]¶
Service for reading and writing metadata entries.
Instantiates the metadata service client.
- Parameters:
credentials (Optional[google.auth.credentials.Credentials]) – The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport (Optional[Union[str,MetadataServiceTransport,Callable[..., MetadataServiceTransport]]]) – The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the MetadataServiceTransport constructor. If set to None, a transport is chosen automatically.
client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]) –
Custom options for the client.
1. The
api_endpoint
property can be used to override the default endpoint provided by the client whentransport
is not explicitly provided. Only if this property is not set andtransport
was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: “always” (always use the default mTLS endpoint), “never” (always use the default regular endpoint) and “auto” (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value).2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “true”, then the
client_cert_source
property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is “false” or not set, no client certificate will be used.3. The
universe_domain
property can be used to override the default “googleapis.com” universe. Note that theapi_endpoint
property still takes precedence; anduniverse_domain
is currently not supported for mTLS.client_info (google.api_core.gapic_v1.client_info.ClientInfo) – The client info used to send a user-agent string along with API requests. If
None
, then default info will be used. Generally, you only need to set this if you’re developing your own client library.
- Raises:
google.auth.exceptions.MutualTLSChannelError – If mutual TLS transport creation failed for any reason.
- __exit__(type, value, traceback)[source]¶
Releases underlying transport’s resources.
Warning
ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients!
- add_context_artifacts_and_executions(request: Optional[Union[AddContextArtifactsAndExecutionsRequest, dict]] = None, *, context: Optional[str] = None, artifacts: Optional[MutableSequence[str]] = None, executions: Optional[MutableSequence[str]] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddContextArtifactsAndExecutionsResponse [source]¶
Adds a set of Artifacts and Executions to a Context. If any of the Artifacts or Executions have already been added to a Context, they are simply skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_add_context_artifacts_and_executions(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.AddContextArtifactsAndExecutionsRequest( context="context_value", ) # Make the request response = client.add_context_artifacts_and_executions(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsRequest, dict]) – The request object. Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
context (str) –
Required. The resource name of the Context that the Artifacts and Executions belong to. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.artifacts (MutableSequence[str]) –
The resource names of the Artifacts to attribute to the Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
artifacts
field on therequest
instance; ifrequest
is provided, this should not be set.executions (MutableSequence[str]) –
The resource names of the Executions to associate with the Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
executions
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
- Return type:
google.cloud.aiplatform_v1.types.AddContextArtifactsAndExecutionsResponse
- add_context_children(request: Optional[Union[AddContextChildrenRequest, dict]] = None, *, context: Optional[str] = None, child_contexts: Optional[MutableSequence[str]] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddContextChildrenResponse [source]¶
Adds a set of Contexts as children to a parent Context. If any of the child Contexts have already been added to the parent Context, they are simply skipped. If this call would create a cycle or cause any Context to have more than 10 parents, the request will fail with an INVALID_ARGUMENT error.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_add_context_children(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.AddContextChildrenRequest( context="context_value", ) # Make the request response = client.add_context_children(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.AddContextChildrenRequest, dict]) – The request object. Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
context (str) –
Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.child_contexts (MutableSequence[str]) –
The resource names of the child Contexts.
This corresponds to the
child_contexts
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
- Return type:
- add_execution_events(request: Optional[Union[AddExecutionEventsRequest, dict]] = None, *, execution: Optional[str] = None, events: Optional[MutableSequence[Event]] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) AddExecutionEventsResponse [source]¶
Adds Events to the specified Execution. An Event indicates whether an Artifact was used as an input or output for an Execution. If an Event already exists between the Execution and the Artifact, the Event is skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_add_execution_events(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.AddExecutionEventsRequest( execution="execution_value", ) # Make the request response = client.add_execution_events(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.AddExecutionEventsRequest, dict]) – The request object. Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
execution (str) –
Required. The resource name of the Execution that the Events connect Artifacts with. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.events (MutableSequence[google.cloud.aiplatform_v1.types.Event]) – The Events to create and add. This corresponds to the
events
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
- Return type:
- property api_endpoint¶
Return the API endpoint used by the client instance.
- Returns:
The API endpoint used by the client instance.
- Return type:
- static artifact_path(project: str, location: str, metadata_store: str, artifact: str) str [source]¶
Returns a fully-qualified artifact string.
- cancel_operation(request: Optional[CancelOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Starts asynchronous cancellation on a long-running operation.
The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
CancelOperationRequest
) – The request object. Request message for CancelOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static common_billing_account_path(billing_account: str) str [source]¶
Returns a fully-qualified billing_account string.
- static common_location_path(project: str, location: str) str [source]¶
Returns a fully-qualified location string.
- static common_organization_path(organization: str) str [source]¶
Returns a fully-qualified organization string.
- static context_path(project: str, location: str, metadata_store: str, context: str) str [source]¶
Returns a fully-qualified context string.
- create_artifact(request: Optional[Union[CreateArtifactRequest, dict]] = None, *, parent: Optional[str] = None, artifact: Optional[Artifact] = None, artifact_id: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Creates an Artifact associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_artifact(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateArtifactRequest( parent="parent_value", ) # Make the request response = client.create_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateArtifactRequest, dict]) – The request object. Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1.MetadataService.CreateArtifact].
parent (str) –
Required. The resource name of the MetadataStore where the Artifact should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.artifact (google.cloud.aiplatform_v1.types.Artifact) – Required. The Artifact to create. This corresponds to the
artifact
field on therequest
instance; ifrequest
is provided, this should not be set.artifact_id (str) –
The {artifact} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
If not provided, the Artifact’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Artifacts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Artifact.)This corresponds to the
artifact_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- create_context(request: Optional[Union[CreateContextRequest, dict]] = None, *, parent: Optional[str] = None, context: Optional[Context] = None, context_id: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Creates a Context associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_context(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateContextRequest( parent="parent_value", ) # Make the request response = client.create_context(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateContextRequest, dict]) – The request object. Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1.MetadataService.CreateContext].
parent (str) –
Required. The resource name of the MetadataStore where the Context should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.context (google.cloud.aiplatform_v1.types.Context) – Required. The Context to create. This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.context_id (str) –
The {context} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
. If not provided, the Context’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Contexts in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Context.)This corresponds to the
context_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- create_execution(request: Optional[Union[CreateExecutionRequest, dict]] = None, *, parent: Optional[str] = None, execution: Optional[Execution] = None, execution_id: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Creates an Execution associated with a MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_execution(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateExecutionRequest( parent="parent_value", ) # Make the request response = client.create_execution(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateExecutionRequest, dict]) – The request object. Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1.MetadataService.CreateExecution].
parent (str) –
Required. The resource name of the MetadataStore where the Execution should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.execution (google.cloud.aiplatform_v1.types.Execution) – Required. The Execution to create. This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.execution_id (str) –
The {execution} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
If not provided, the Execution’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all Executions in the parent MetadataStore. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting Execution.)This corresponds to the
execution_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- create_metadata_schema(request: Optional[Union[CreateMetadataSchemaRequest, dict]] = None, *, parent: Optional[str] = None, metadata_schema: Optional[MetadataSchema] = None, metadata_schema_id: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataSchema [source]¶
Creates a MetadataSchema.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_metadata_schema(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) metadata_schema = aiplatform_v1.MetadataSchema() metadata_schema.schema = "schema_value" request = aiplatform_v1.CreateMetadataSchemaRequest( parent="parent_value", metadata_schema=metadata_schema, ) # Make the request response = client.create_metadata_schema(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateMetadataSchemaRequest, dict]) – The request object. Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1.MetadataService.CreateMetadataSchema].
parent (str) –
Required. The resource name of the MetadataStore where the MetadataSchema should be created. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_schema (google.cloud.aiplatform_v1.types.MetadataSchema) –
Required. The MetadataSchema to create.
This corresponds to the
metadata_schema
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_schema_id (str) –
The {metadata_schema} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/metadataSchemas/{metadataschema}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataSchemas in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataSchema.)This corresponds to the
metadata_schema_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general MetadataSchema.
- Return type:
- create_metadata_store(request: Optional[Union[CreateMetadataStoreRequest, dict]] = None, *, parent: Optional[str] = None, metadata_store: Optional[MetadataStore] = None, metadata_store_id: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Initializes a MetadataStore, including allocation of resources.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateMetadataStoreRequest( parent="parent_value", ) # Make the request operation = client.create_metadata_store(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.CreateMetadataStoreRequest, dict]) – The request object. Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
parent (str) –
Required. The resource name of the Location where the MetadataStore should be created. Format:
projects/{project}/locations/{location}/
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_store (google.cloud.aiplatform_v1.types.MetadataStore) –
Required. The MetadataStore to create.
This corresponds to the
metadata_store
field on therequest
instance; ifrequest
is provided, this should not be set.metadata_store_id (str) –
The {metadatastore} portion of the resource name with the format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
If not provided, the MetadataStore’s ID will be a UUID generated by the service. Must be 4-128 characters in length. Valid characters are/[a-z][0-9]-/
. Must be unique across all MetadataStores in the parent Location. (Otherwise the request will fail with ALREADY_EXISTS, or PERMISSION_DENIED if the caller can’t view the preexisting MetadataStore.)This corresponds to the
metadata_store_id
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.MetadataStore
Instance of a metadata store. Contains a set of metadata that can be queried.
- The result type for the operation will be
- Return type:
- delete_artifact(request: Optional[Union[DeleteArtifactRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes an Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_artifact(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteArtifactRequest( name="name_value", ) # Make the request operation = client.delete_artifact(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteArtifactRequest, dict]) – The request object. Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1.MetadataService.DeleteArtifact].
name (str) –
Required. The resource name of the Artifact to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_context(request: Optional[Union[DeleteContextRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes a stored Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_context(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteContextRequest( name="name_value", ) # Make the request operation = client.delete_context(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteContextRequest, dict]) – The request object. Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1.MetadataService.DeleteContext].
name (str) –
Required. The resource name of the Context to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_execution(request: Optional[Union[DeleteExecutionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes an Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_execution(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteExecutionRequest( name="name_value", ) # Make the request operation = client.delete_execution(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteExecutionRequest, dict]) – The request object. Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1.MetadataService.DeleteExecution].
name (str) –
Required. The resource name of the Execution to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_metadata_store(request: Optional[Union[DeleteMetadataStoreRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Deletes a single MetadataStore and all its child resources (Artifacts, Executions, and Contexts).
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteMetadataStoreRequest( name="name_value", ) # Make the request operation = client.delete_metadata_store(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.DeleteMetadataStoreRequest, dict]) – The request object. Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
name (str) –
Required. The resource name of the MetadataStore to delete. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.protobuf.empty_pb2.Empty
A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:
- service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
- The result type for the operation will be
- Return type:
- delete_operation(request: Optional[DeleteOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) None [source]¶
Deletes a long-running operation.
This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn’t support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
DeleteOperationRequest
) – The request object. Request message for DeleteOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
None
- static execution_path(project: str, location: str, metadata_store: str, execution: str) str [source]¶
Returns a fully-qualified execution string.
- classmethod from_service_account_file(filename: str, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_info(info: dict, *args, **kwargs)[source]¶
- Creates an instance of this client using the provided credentials
info.
- Parameters:
info (dict) – The service account private key info.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- classmethod from_service_account_json(filename: str, *args, **kwargs)¶
- Creates an instance of this client using the provided credentials
file.
- Parameters:
filename (str) – The path to the service account private key json file.
args – Additional arguments to pass to the constructor.
kwargs – Additional arguments to pass to the constructor.
- Returns:
The constructed client.
- Return type:
- get_artifact(request: Optional[Union[GetArtifactRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Retrieves a specific Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_artifact(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetArtifactRequest( name="name_value", ) # Make the request response = client.get_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetArtifactRequest, dict]) – The request object. Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1.MetadataService.GetArtifact].
name (str) –
Required. The resource name of the Artifact to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- get_context(request: Optional[Union[GetContextRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Retrieves a specific Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_context(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetContextRequest( name="name_value", ) # Make the request response = client.get_context(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetContextRequest, dict]) – The request object. Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1.MetadataService.GetContext].
name (str) –
Required. The resource name of the Context to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- get_execution(request: Optional[Union[GetExecutionRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Retrieves a specific Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_execution(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetExecutionRequest( name="name_value", ) # Make the request response = client.get_execution(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetExecutionRequest, dict]) – The request object. Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1.MetadataService.GetExecution].
name (str) –
Required. The resource name of the Execution to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- get_iam_policy(request: Optional[GetIamPolicyRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Gets the IAM access control policy for a function.
Returns an empty policy if the function exists and does not have a policy set.
- Parameters:
request (
GetIamPolicyRequest
) – The request object. Request message for GetIamPolicy method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- get_location(request: Optional[GetLocationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Location [source]¶
Gets information about a location.
- Parameters:
request (
GetLocationRequest
) – The request object. Request message for GetLocation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Location object.
- Return type:
Location
- get_metadata_schema(request: Optional[Union[GetMetadataSchemaRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataSchema [source]¶
Retrieves a specific MetadataSchema.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_metadata_schema(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetMetadataSchemaRequest( name="name_value", ) # Make the request response = client.get_metadata_schema(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetMetadataSchemaRequest, dict]) – The request object. Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1.MetadataService.GetMetadataSchema].
name (str) –
Required. The resource name of the MetadataSchema to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/metadataSchemas/{metadataschema}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general MetadataSchema.
- Return type:
- get_metadata_store(request: Optional[Union[GetMetadataStoreRequest, dict]] = None, *, name: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) MetadataStore [source]¶
Retrieves a specific MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_metadata_store(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetMetadataStoreRequest( name="name_value", ) # Make the request response = client.get_metadata_store(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.GetMetadataStoreRequest, dict]) – The request object. Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1.MetadataService.GetMetadataStore].
name (str) –
Required. The resource name of the MetadataStore to retrieve. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
name
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a metadata store. Contains a set of metadata that can be queried.
- Return type:
- classmethod get_mtls_endpoint_and_cert_source(client_options: Optional[ClientOptions] = None)[source]¶
Deprecated. Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not “true”, the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.
The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is “always”, use the default mTLS endpoint; if the environment variable is “never”, use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
- Parameters:
client_options (google.api_core.client_options.ClientOptions) – Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.
- Returns:
- returns the API endpoint and the
client cert source to use.
- Return type:
- Raises:
google.auth.exceptions.MutualTLSChannelError – If any errors happen.
- get_operation(request: Optional[GetOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Gets the latest state of a long-running operation.
- Parameters:
request (
GetOperationRequest
) – The request object. Request message for GetOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- list_artifacts(request: Optional[Union[ListArtifactsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListArtifactsPager [source]¶
Lists Artifacts in the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_artifacts(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListArtifactsRequest( parent="parent_value", ) # Make the request page_result = client.list_artifacts(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListArtifactsRequest, dict]) – The request object. Request message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
parent (str) –
Required. The MetadataStore whose Artifacts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListArtifactsPager
- list_contexts(request: Optional[Union[ListContextsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListContextsPager [source]¶
Lists Contexts on the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_contexts(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListContextsRequest( parent="parent_value", ) # Make the request page_result = client.list_contexts(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListContextsRequest, dict]) – The request object. Request message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts]
parent (str) –
Required. The MetadataStore whose Contexts should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListContextsPager
- list_executions(request: Optional[Union[ListExecutionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListExecutionsPager [source]¶
Lists Executions in the MetadataStore.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_executions(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListExecutionsRequest( parent="parent_value", ) # Make the request page_result = client.list_executions(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListExecutionsRequest, dict]) – The request object. Request message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
parent (str) –
Required. The MetadataStore whose Executions should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListExecutionsPager
- list_locations(request: Optional[ListLocationsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListLocationsResponse [source]¶
Lists information about the supported locations for this service.
- Parameters:
request (
ListLocationsRequest
) – The request object. Request message for ListLocations method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListLocations
method.- Return type:
ListLocationsResponse
- list_metadata_schemas(request: Optional[Union[ListMetadataSchemasRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListMetadataSchemasPager [source]¶
Lists MetadataSchemas.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_metadata_schemas(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListMetadataSchemasRequest( parent="parent_value", ) # Make the request page_result = client.list_metadata_schemas(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListMetadataSchemasRequest, dict]) – The request object. Request message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
parent (str) –
Required. The MetadataStore whose MetadataSchemas should be listed. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataSchemasPager
- list_metadata_stores(request: Optional[Union[ListMetadataStoresRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListMetadataStoresPager [source]¶
Lists MetadataStores for a Location.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_metadata_stores(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListMetadataStoresRequest( parent="parent_value", ) # Make the request page_result = client.list_metadata_stores(request=request) # Handle the response for response in page_result: print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.ListMetadataStoresRequest, dict]) – The request object. Request message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
parent (str) –
Required. The Location whose MetadataStores should be listed. Format:
projects/{project}/locations/{location}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
Iterating over this object will yield results and resolve additional pages automatically.
- Return type:
google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataStoresPager
- list_operations(request: Optional[ListOperationsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) ListOperationsResponse [source]¶
Lists operations that match the specified filter in the request.
- Parameters:
request (
ListOperationsRequest
) – The request object. Request message for ListOperations method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
ListOperations
method.- Return type:
ListOperationsResponse
- static metadata_schema_path(project: str, location: str, metadata_store: str, metadata_schema: str) str [source]¶
Returns a fully-qualified metadata_schema string.
- static metadata_store_path(project: str, location: str, metadata_store: str) str [source]¶
Returns a fully-qualified metadata_store string.
- static parse_artifact_path(path: str) Dict[str, str] [source]¶
Parses a artifact path into its component segments.
- static parse_common_billing_account_path(path: str) Dict[str, str] [source]¶
Parse a billing_account path into its component segments.
- static parse_common_folder_path(path: str) Dict[str, str] [source]¶
Parse a folder path into its component segments.
- static parse_common_location_path(path: str) Dict[str, str] [source]¶
Parse a location path into its component segments.
- static parse_common_organization_path(path: str) Dict[str, str] [source]¶
Parse a organization path into its component segments.
- static parse_common_project_path(path: str) Dict[str, str] [source]¶
Parse a project path into its component segments.
- static parse_context_path(path: str) Dict[str, str] [source]¶
Parses a context path into its component segments.
- static parse_execution_path(path: str) Dict[str, str] [source]¶
Parses a execution path into its component segments.
- static parse_metadata_schema_path(path: str) Dict[str, str] [source]¶
Parses a metadata_schema path into its component segments.
- static parse_metadata_store_path(path: str) Dict[str, str] [source]¶
Parses a metadata_store path into its component segments.
- purge_artifacts(request: Optional[Union[PurgeArtifactsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Purges Artifacts.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_purge_artifacts(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.PurgeArtifactsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_artifacts(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.PurgeArtifactsRequest, dict]) – The request object. Request message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
parent (str) –
Required. The metadata store to purge Artifacts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeArtifactsResponse
Response message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
- The result type for the operation will be
- Return type:
- purge_contexts(request: Optional[Union[PurgeContextsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Purges Contexts.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_purge_contexts(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.PurgeContextsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_contexts(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.PurgeContextsRequest, dict]) – The request object. Request message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
parent (str) –
Required. The metadata store to purge Contexts from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeContextsResponse
Response message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
- The result type for the operation will be
- Return type:
- purge_executions(request: Optional[Union[PurgeExecutionsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Purges Executions.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_purge_executions(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.PurgeExecutionsRequest( parent="parent_value", filter="filter_value", ) # Make the request operation = client.purge_executions(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.PurgeExecutionsRequest, dict]) – The request object. Request message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
parent (str) –
Required. The metadata store to purge Executions from. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}
This corresponds to the
parent
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An object representing a long-running operation.
- The result type for the operation will be
google.cloud.aiplatform_v1.types.PurgeExecutionsResponse
Response message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
- The result type for the operation will be
- Return type:
- query_artifact_lineage_subgraph(request: Optional[Union[QueryArtifactLineageSubgraphRequest, dict]] = None, *, artifact: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Retrieves lineage of an Artifact represented through Artifacts and Executions connected by Event edges and returned as a LineageSubgraph.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_query_artifact_lineage_subgraph(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.QueryArtifactLineageSubgraphRequest( artifact="artifact_value", ) # Make the request response = client.query_artifact_lineage_subgraph(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.QueryArtifactLineageSubgraphRequest, dict]) – The request object. Request message for [MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryArtifactLineageSubgraph].
artifact (str) –
Required. The resource name of the Artifact whose Lineage needs to be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
This corresponds to the
artifact
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- query_context_lineage_subgraph(request: Optional[Union[QueryContextLineageSubgraphRequest, dict]] = None, *, context: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Retrieves Artifacts and Executions within the specified Context, connected by Event edges and returned as a LineageSubgraph.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_query_context_lineage_subgraph(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.QueryContextLineageSubgraphRequest( context="context_value", ) # Make the request response = client.query_context_lineage_subgraph(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.QueryContextLineageSubgraphRequest, dict]) – The request object. Request message for [MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryContextLineageSubgraph].
context (str) –
Required. The resource name of the Context whose Artifacts and Executions should be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
The request may error with FAILED_PRECONDITION if the number of Artifacts, the number of Executions, or the number of Events that would be returned for the Context exceeds 1000.
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- query_execution_inputs_and_outputs(request: Optional[Union[QueryExecutionInputsAndOutputsRequest, dict]] = None, *, execution: Optional[str] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) LineageSubgraph [source]¶
Obtains the set of input and output Artifacts for this Execution, in the form of LineageSubgraph that also contains the Execution and connecting Events.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_query_execution_inputs_and_outputs(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.QueryExecutionInputsAndOutputsRequest( execution="execution_value", ) # Make the request response = client.query_execution_inputs_and_outputs(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.QueryExecutionInputsAndOutputsRequest, dict]) – The request object. Request message for [MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1.MetadataService.QueryExecutionInputsAndOutputs].
execution (str) –
Required. The resource name of the Execution whose input and output Artifacts should be retrieved as a LineageSubgraph. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
- Return type:
- remove_context_children(request: Optional[Union[RemoveContextChildrenRequest, dict]] = None, *, context: Optional[str] = None, child_contexts: Optional[MutableSequence[str]] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) RemoveContextChildrenResponse [source]¶
Remove a set of children contexts from a parent Context. If any of the child Contexts were NOT added to the parent Context, they are simply skipped.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_remove_context_children(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.RemoveContextChildrenRequest( context="context_value", ) # Make the request response = client.remove_context_children(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.RemoveContextChildrenRequest, dict]) – The request object. Request message for [MetadataService.DeleteContextChildrenRequest][].
context (str) –
Required. The resource name of the parent Context.
Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.child_contexts (MutableSequence[str]) –
The resource names of the child Contexts.
This corresponds to the
child_contexts
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
- Response message for
[MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1.MetadataService.RemoveContextChildren].
- Return type:
google.cloud.aiplatform_v1.types.RemoveContextChildrenResponse
- set_iam_policy(request: Optional[SetIamPolicyRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Policy [source]¶
Sets the IAM access control policy on the specified function.
Replaces any existing policy.
- Parameters:
request (
SetIamPolicyRequest
) – The request object. Request message for SetIamPolicy method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A
Policy
is a collection ofbindings
. Abinding
binds one or moremembers
to a singlerole
. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). Arole
is a named list of permissions (defined by IAM or configured by users). Abinding
can optionally specify acondition
, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.JSON Example
{ "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] }
YAML Example
bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
For a description of IAM and its features, see the IAM developer’s guide.
- Return type:
Policy
- test_iam_permissions(request: Optional[TestIamPermissionsRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) TestIamPermissionsResponse [source]¶
- Tests the specified IAM permissions against the IAM access control
policy for a function.
If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
- Parameters:
request (
TestIamPermissionsRequest
) – The request object. Request message for TestIamPermissions method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Response message for
TestIamPermissions
method.- Return type:
TestIamPermissionsResponse
- property transport: MetadataServiceTransport¶
Returns the transport used by the client instance.
- Returns:
- The transport used by the client
instance.
- Return type:
MetadataServiceTransport
- property universe_domain: str¶
Return the universe domain used by the client instance.
- Returns:
The universe domain used by the client instance.
- Return type:
- update_artifact(request: Optional[Union[UpdateArtifactRequest, dict]] = None, *, artifact: Optional[Artifact] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Artifact [source]¶
Updates a stored Artifact.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_artifact(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.UpdateArtifactRequest( ) # Make the request response = client.update_artifact(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.UpdateArtifactRequest, dict]) – The request object. Request message for [MetadataService.UpdateArtifact][google.cloud.aiplatform.v1.MetadataService.UpdateArtifact].
artifact (google.cloud.aiplatform_v1.types.Artifact) –
Required. The Artifact containing updates. The Artifact’s [Artifact.name][google.cloud.aiplatform.v1.Artifact.name] field is used to identify the Artifact to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}
This corresponds to the
artifact
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general artifact.
- Return type:
- update_context(request: Optional[Union[UpdateContextRequest, dict]] = None, *, context: Optional[Context] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Context [source]¶
Updates a stored Context.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_context(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.UpdateContextRequest( ) # Make the request response = client.update_context(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.UpdateContextRequest, dict]) – The request object. Request message for [MetadataService.UpdateContext][google.cloud.aiplatform.v1.MetadataService.UpdateContext].
context (google.cloud.aiplatform_v1.types.Context) –
Required. The Context containing updates. The Context’s [Context.name][google.cloud.aiplatform.v1.Context.name] field is used to identify the Context to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}
This corresponds to the
context
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general context.
- Return type:
- update_execution(request: Optional[Union[UpdateExecutionRequest, dict]] = None, *, execution: Optional[Execution] = None, update_mask: Optional[FieldMask] = None, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Execution [source]¶
Updates a stored Execution.
# This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_execution(): # Create a client client = aiplatform_v1.MetadataServiceClient() # Initialize request argument(s) request = aiplatform_v1.UpdateExecutionRequest( ) # Make the request response = client.update_execution(request=request) # Handle the response print(response)
- Parameters:
request (Union[google.cloud.aiplatform_v1.types.UpdateExecutionRequest, dict]) – The request object. Request message for [MetadataService.UpdateExecution][google.cloud.aiplatform.v1.MetadataService.UpdateExecution].
execution (google.cloud.aiplatform_v1.types.Execution) –
Required. The Execution containing updates. The Execution’s [Execution.name][google.cloud.aiplatform.v1.Execution.name] field is used to identify the Execution to be updated. Format:
projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}
This corresponds to the
execution
field on therequest
instance; ifrequest
is provided, this should not be set.update_mask (google.protobuf.field_mask_pb2.FieldMask) –
Optional. A FieldMask indicating which fields should be updated.
This corresponds to the
update_mask
field on therequest
instance; ifrequest
is provided, this should not be set.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
Instance of a general execution.
- Return type:
- wait_operation(request: Optional[WaitOperationRequest] = None, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ()) Operation [source]¶
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.
If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.
- Parameters:
request (
WaitOperationRequest
) – The request object. Request message for WaitOperation method.retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- Returns:
An
Operation
object.- Return type:
Operation
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListArtifactsAsyncPager(method: Callable[[...], Awaitable[ListArtifactsResponse]], request: ListArtifactsRequest, response: ListArtifactsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_artifacts
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListArtifactsResponse
object, and provides an__aiter__
method to iterate through itsartifacts
field.If there are more pages, the
__aiter__
method will make additionalListArtifacts
requests and continue to iterate through theartifacts
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListArtifactsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListArtifactsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListArtifactsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListArtifactsPager(method: Callable[[...], ListArtifactsResponse], request: ListArtifactsRequest, response: ListArtifactsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_artifacts
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListArtifactsResponse
object, and provides an__iter__
method to iterate through itsartifacts
field.If there are more pages, the
__iter__
method will make additionalListArtifacts
requests and continue to iterate through theartifacts
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListArtifactsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListArtifactsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListArtifactsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListContextsAsyncPager(method: Callable[[...], Awaitable[ListContextsResponse]], request: ListContextsRequest, response: ListContextsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_contexts
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListContextsResponse
object, and provides an__aiter__
method to iterate through itscontexts
field.If there are more pages, the
__aiter__
method will make additionalListContexts
requests and continue to iterate through thecontexts
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListContextsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListContextsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListContextsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListContextsPager(method: Callable[[...], ListContextsResponse], request: ListContextsRequest, response: ListContextsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_contexts
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListContextsResponse
object, and provides an__iter__
method to iterate through itscontexts
field.If there are more pages, the
__iter__
method will make additionalListContexts
requests and continue to iterate through thecontexts
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListContextsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListContextsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListContextsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListExecutionsAsyncPager(method: Callable[[...], Awaitable[ListExecutionsResponse]], request: ListExecutionsRequest, response: ListExecutionsResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_executions
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListExecutionsResponse
object, and provides an__aiter__
method to iterate through itsexecutions
field.If there are more pages, the
__aiter__
method will make additionalListExecutions
requests and continue to iterate through theexecutions
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListExecutionsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListExecutionsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListExecutionsResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListExecutionsPager(method: Callable[[...], ListExecutionsResponse], request: ListExecutionsRequest, response: ListExecutionsResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_executions
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListExecutionsResponse
object, and provides an__iter__
method to iterate through itsexecutions
field.If there are more pages, the
__iter__
method will make additionalListExecutions
requests and continue to iterate through theexecutions
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListExecutionsResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListExecutionsRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListExecutionsResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataSchemasAsyncPager(method: Callable[[...], Awaitable[ListMetadataSchemasResponse]], request: ListMetadataSchemasRequest, response: ListMetadataSchemasResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_metadata_schemas
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse
object, and provides an__aiter__
method to iterate through itsmetadata_schemas
field.If there are more pages, the
__aiter__
method will make additionalListMetadataSchemas
requests and continue to iterate through themetadata_schemas
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListMetadataSchemasRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataSchemasPager(method: Callable[[...], ListMetadataSchemasResponse], request: ListMetadataSchemasRequest, response: ListMetadataSchemasResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_metadata_schemas
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse
object, and provides an__iter__
method to iterate through itsmetadata_schemas
field.If there are more pages, the
__iter__
method will make additionalListMetadataSchemas
requests and continue to iterate through themetadata_schemas
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListMetadataSchemasRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListMetadataSchemasResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataStoresAsyncPager(method: Callable[[...], Awaitable[ListMetadataStoresResponse]], request: ListMetadataStoresRequest, response: ListMetadataStoresResponse, *, retry: Optional[Union[AsyncRetry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_metadata_stores
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListMetadataStoresResponse
object, and provides an__aiter__
method to iterate through itsmetadata_stores
field.If there are more pages, the
__aiter__
method will make additionalListMetadataStores
requests and continue to iterate through themetadata_stores
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListMetadataStoresResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiates the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListMetadataStoresRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListMetadataStoresResponse) – The initial response object.
retry (google.api_core.retry.AsyncRetry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.
- class google.cloud.aiplatform_v1.services.metadata_service.pagers.ListMetadataStoresPager(method: Callable[[...], ListMetadataStoresResponse], request: ListMetadataStoresRequest, response: ListMetadataStoresResponse, *, retry: Optional[Union[Retry, _MethodDefault]] = _MethodDefault._DEFAULT_VALUE, timeout: Union[float, object] = _MethodDefault._DEFAULT_VALUE, metadata: Sequence[Tuple[str, str]] = ())[source]¶
A pager for iterating through
list_metadata_stores
requests.This class thinly wraps an initial
google.cloud.aiplatform_v1.types.ListMetadataStoresResponse
object, and provides an__iter__
method to iterate through itsmetadata_stores
field.If there are more pages, the
__iter__
method will make additionalListMetadataStores
requests and continue to iterate through themetadata_stores
field on the corresponding responses.All the usual
google.cloud.aiplatform_v1.types.ListMetadataStoresResponse
attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.Instantiate the pager.
- Parameters:
method (Callable) – The method that was originally called, and which instantiated this pager.
request (google.cloud.aiplatform_v1.types.ListMetadataStoresRequest) – The initial request object.
response (google.cloud.aiplatform_v1.types.ListMetadataStoresResponse) – The initial response object.
retry (google.api_core.retry.Retry) – Designation of what errors, if any, should be retried.
timeout (float) – The timeout for this request.
metadata (Sequence[Tuple[str, str]]) – Strings which should be sent along with the request as metadata.