Show / Hide Table of Contents

Class GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inheritance
object
GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Implements
IDirectResponseSchema
Inherited Members
object.Equals(object)
object.Equals(object, object)
object.GetHashCode()
object.GetType()
object.MemberwiseClone()
object.ReferenceEquals(object, object)
object.ToString()
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics : IDirectResponseSchema

Properties

ConfidenceThreshold

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.

Declaration
[JsonProperty("confidenceThreshold")]
public virtual float? ConfidenceThreshold { get; set; }
Property Value
Type Description
float?

ConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold.

Declaration
[JsonProperty("confusionMatrix")]
public virtual GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix ConfusionMatrix { get; set; }
Property Value
Type Description
GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix

ETag

The ETag of the item.

Declaration
public virtual string ETag { get; set; }
Property Value
Type Description
string

F1Score

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score.

Declaration
[JsonProperty("f1Score")]
public virtual float? F1Score { get; set; }
Property Value
Type Description
float?

F1ScoreAt1

The harmonic mean of recallAt1 and precisionAt1.

Declaration
[JsonProperty("f1ScoreAt1")]
public virtual float? F1ScoreAt1 { get; set; }
Property Value
Type Description
float?

F1ScoreMacro

Macro-averaged F1 Score.

Declaration
[JsonProperty("f1ScoreMacro")]
public virtual float? F1ScoreMacro { get; set; }
Property Value
Type Description
float?

F1ScoreMicro

Micro-averaged F1 Score.

Declaration
[JsonProperty("f1ScoreMicro")]
public virtual float? F1ScoreMicro { get; set; }
Property Value
Type Description
float?

FalseNegativeCount

The number of ground truth labels that are not matched by a Model created label.

Declaration
[JsonProperty("falseNegativeCount")]
public virtual long? FalseNegativeCount { get; set; }
Property Value
Type Description
long?

FalsePositiveCount

The number of Model created labels that do not match a ground truth label.

Declaration
[JsonProperty("falsePositiveCount")]
public virtual long? FalsePositiveCount { get; set; }
Property Value
Type Description
long?

FalsePositiveRate

False Positive Rate for the given confidence threshold.

Declaration
[JsonProperty("falsePositiveRate")]
public virtual float? FalsePositiveRate { get; set; }
Property Value
Type Description
float?

FalsePositiveRateAt1

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.

Declaration
[JsonProperty("falsePositiveRateAt1")]
public virtual float? FalsePositiveRateAt1 { get; set; }
Property Value
Type Description
float?

MaxPredictions

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold.

Declaration
[JsonProperty("maxPredictions")]
public virtual int? MaxPredictions { get; set; }
Property Value
Type Description
int?

Precision

Precision for the given confidence threshold.

Declaration
[JsonProperty("precision")]
public virtual float? Precision { get; set; }
Property Value
Type Description
float?

PrecisionAt1

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.

Declaration
[JsonProperty("precisionAt1")]
public virtual float? PrecisionAt1 { get; set; }
Property Value
Type Description
float?

Recall

Recall (True Positive Rate) for the given confidence threshold.

Declaration
[JsonProperty("recall")]
public virtual float? Recall { get; set; }
Property Value
Type Description
float?

RecallAt1

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.

Declaration
[JsonProperty("recallAt1")]
public virtual float? RecallAt1 { get; set; }
Property Value
Type Description
float?

TrueNegativeCount

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.

Declaration
[JsonProperty("trueNegativeCount")]
public virtual long? TrueNegativeCount { get; set; }
Property Value
Type Description
long?

TruePositiveCount

The number of Model created labels that match a ground truth label.

Declaration
[JsonProperty("truePositiveCount")]
public virtual long? TruePositiveCount { get; set; }
Property Value
Type Description
long?

Implements

IDirectResponseSchema
In this article
Back to top Generated by DocFX